uM-FPU64 IDE

-
' Y Integrated Development
b Environment

Micromega Corporation

User Manual
Release 411

Introduction

The uM-FPU64 Integrated Development Environment (IDE) software provides a set of easy-to-use tools for
developing applications using the uM-FPU64 floating point coprocessor. The IDE runs on Windows XP, Vista and
Windows 7, and provides support for compiling, debugging, and programming the uM-FPU64 floating point
COpPIocessor.

Main Features
Compiling
ebuilt-in code editor for entering FPU source code
esource window tab processing and auto-indent
*FPU code can be written in compiled code or assembler code
ecompiler generates code for FPU functions or customized to the selected microcontroller
etarget description files provide for most commonly used microcontrollers
eusers can create target description files for customized code generation
*FPU code can be programmed to Flash memory or copied to the microcontroller program
Debugging
einstruction tracing
econtents of all FPU registers can be displayed in various formats
edisplay windows for Flash memory, RAM, and matrices
eserial output can be displayed by IDE
*breakpoints and single-step execution
econditional breakpoints using auto-step capability
esymbol definitions from compiler used for instruction trace and display windows
enumeric conversion tool for 32-bit and 64-bit floating point and integer values
Programming Flash Memory

ebuilt-in programmer for storing user-defined functions in Flash memory
ememory map display for Flash memory
egraphic interface for setting parameter bytes stored in Flash

Further Information

The following documents are also available:
uM-FPU64 Datasheet provides hardware details and specifications
uM-FPUG64 Instruction Set provides detailed descriptions of each instruction

Check the Micromega website at www.micromegacorp.com for up-to-date information.

Micromega Corporation 1 Revised 2014-08-12

http://www.micromegacorp.com

Installing and Connecting

Table of Contents

[T T o LT Ty { o) o 1 1
1Y = Y1 T =7 10 1 =S 1
70340113 P 1
DEUGGING - et 1
Programming FIash MemIOry .. .ccee i 1
Further INformation -cccceoviiiiiicii i i i i s s s s s s s s s s s sa s rassassassmssmssmsamssmsanssnsansansansansnnsnnnns 1
B = 0] =30 Y 2070 Y 11 1= 1 1 - 2
Installing the UM-FPUG4 IDE SOftWare -....ccccoooi e 6
Upgrading the UM-FPUBS FirMWAre -« e uccceemeeiiiiierececmiees s s s s s e s s s mmn e smn s e e 6
Connecting to the UM-FPUGB4 Chip ««ec-uusiiniimmmmmieeiiiiiinnnisssss s s 7
{070 3T o T= T3 {0 g TN D =T = o 7

L 182 Ve 1= oL 7
Overview of UM-FPUGA IDE USer INtEIrfacCe - trerurmtmrmrmimieieieieieisssrararararatasasasasesasasassssssssssssssssssssnsnss 8
LS T0 101 007= T "A"A T o [0 .Y AN 8

L U)o T T4 o [0 9

9 =Y o TH o T o 0 10
(L0173 (0 F= A4 [o [0 .2 PP 11
Y=Y T I I == AT AT T o 12 11
Tutorial 1: Compiling FPU Code i it 12
Compiling UM-FPUBZ COOB -++xuuneeeiiiiiiiiiiiii e e 12
Starting the UM-FPUBE IDE -...ccveeeiiii et 13
Entering @ Simple EQUAtiON - v eeveeee e 13
DefiNiNG NAMES «+vvvrrnniiii et 14
RS2V 0T o)L= = €)=Y] A 14
(07 1[o101 = 1T T = o U L= 14
Copying Code to the Microcontroller Program ... 15

o T T Yo (g T=0 o (o= o P 17
Calculating Diameter, Circumference and Ar€a « -« . v eeirieiiiiiiie e 17
Copy Revised Code to the Microcontroller Program «........ooeeeieiiiiniiiiiii e, 18
Running the ReViSed Program « ... e 20
SaVviNg the SOUICE FlE «-uvveieiiiiiie e 20
Tutorial 2: Debugging FPU Code--. - i irn s rr s r s s r s n s r e e e e 21
Making the CONNECHION - «++vvvteeeeiiiiiti it 21
Tracing INSTTUCHIONS -+ cvve e 21
BreaKPOINES «vneeeeie e 22
SINGIE StEPPING «+vvnnrererreteitiiir e 23
Tutorial 3: Programming FPU Flash MemOrY ...t 24
Y P21 (T g To R (g T3 07 Vg 1= o] o 1PN 24
DefiNiNg fUNCHIONS . uviiiiiii e 24
Calling FUNCHONS -« -t e 24
Modifying the Code for FUNCHONS -«..vvvvriieeiiiiiii e 25
Compile and Review the FUNCHONS «vvvvvveeeiiieiiiici s 26

o] 0) 1T IR (4= Y0 V13 To] o) o - 26
Copy Revised Code to the Microcontroller Program ... 27

o LT T Yo i (g L= (oo 7= o P 27
Reference Guide: Menus and Dialogs -----:s:sssssnnmnnsn s 31
T = Y01 = 1 S 31
1=, 31

Micromega Corporation 2 uM-FPU64 IDE User Manual r411

Installing and Connecting

] = o 31
L@ 0T oY oY 31
E T2 V7= Y 31
E T2 Y= VPP 31
41 P 31
e |10 1Y, =Y T 32
{61 o [0 32
=Y [0 32
(O]0 | T TSP TT TR UPRPPPPPPPIN 32
70) 32
) (= 1 32
(@] =7 T 32
£ =Y 1= Yo Y | 32
(@0 21211/ =Y | 32
[0 g Yoo 2102 1= | PSPPI 32
T Lo TR PP PP 32
9 =Y o TH o 1Y =Y o 34
F Y= 1Yo S oY 34
o 2o = | A 34
0] o 34
(T P 34
S T o 34
S (=] 0= 34
S (=] o 1 | 34
1 (0 TR) (= o N 34
AUt StEP CONAItIONS +rvvvrrrnniieee i e 34
B IO T T 1= Ve =X o T PP 35
LI T T 1= Ve = T 1 P 35
REaAA REGISTEIS -+ et eeetii e 35
[== Vo BV = £ {0 1 35
1T 703 £ 0] L0 LY/ =Y o 1 36
L T [0 S 20 Y PPN 36
Program FIash MEMOIY .. .ccuu i 36
Clear FIash MEMOIYcoooiiiiiii e e e 36
[T=Y= T BN 0T 0T 10] o 36
LYY B = 12210 1= (=) 36
B 0 Y0] EST 1Y = 2 1 S 37
[N U] o Y= a0 0 V2= 1 = S 37
INteractive COmPIIET < vuu e 38
Firmware Update. .. e 40
LTV AT T [0V, 1= o T T 41
oY oYX ALY F 1T T AT AT 8 Vo [1 25 41
Serial Setup OPONS. .. ccvuiiiei s 4
LS Yo T RS Y=Y 7Y AT AT T o 1Y 42
Show Flash MeMmMOrY... «ooeeeiiiii e 43
SHOW RAM VW iNOOW e eniiiiiii ettt ettt ettt ettt e e e et e e aeaea s ea e an e aeaeeaeaeaenennn 43
S oYX T ALY F R 1) AT AT Vo [0 . 47
L= 0 01V = o T 49
UM-FPUBZ IDE USEI IMANUA] - +tunetintiiiiiiiii it tit ittt et eastsasstasssanssasssasssasseasseasseasseensesnseenssenees 49

Micromega Corporation 3 uM-FPU64 IDE User Manual r411

Installing and Connecting

UM-FPUB4Z IDE COMPIIET + et e e e e 49
UM-F P UGB INSIUCTION S ettt ittt et ettt et e ia et ea et ea st aa st ass e aaseanseanseanseanseanseanenns 49
U]/ o U7 B I F Y 7= T 1= = PP 49
Micromega WEDSILE .. .ovveeeieee e 49
APPHCAtION NOIES - eeeei et 49
ADOUL UM-FPUBZ IDE - e ittt et e ettt et ettt ettt e e e e e e e e e e n e e e e an e e e e aaeeaeaeanens 49
Reference Guide: Compiler and Assemblerocueeeueiiiiiiiii s 50
L YoYU (=T AY 18T [1. P 50
Automatic Tab ReplaCcement - . ovvveu i 51
= Lo I o 0T T T 51
= T T N (o TS = (=Y o 1 I PP 51
Lo L I T TS Y= (= o 10 o T 51

£ 111 7= o S 51
10T 1= (= 51

N 1 (0 Tt g Vo =Y | PP 51
= (0] PN 51

F o 11 250 1= (151 S 51
OUIPUL WINAOW e e 52
Updating Target Files with LiNKed COde -« -« vt eerrieiiiiiiiieiiice e 53
Reference Guide: DebUgger- ... e 54
MaKing the CONNECHION -« «uuuuuttiiii bbb aae 54
Source Level DEDUGQING -« - vvuuiiieriiiiiie s 54
Debug Window[image. paf]- - -« e 54
Source-level DEbUG DISPlay - -« eerrreuuummiiiieeiiie e 54
DEDUG BULIONS -t 56
0] o 56
(T P 56

S T o 56

S (=] = 56

S (=] o 1 | 56
1 (0 TR) (= o N 56
= TSI D] o] - P 57
BreakpOiNts v veeu et 57
The RegiSter Pan€l .. cccun i 57
T 0 g4 1T 7= T 59
B P2 L 7= 1= 00 59
AFACE SUPPIES SOOI « ettt 59

B =107 X0 L1 T PN 59

(ol A O = 0 Yo [0] (=T o = £ 0] (PP 59
FPU Error: BUfEr OVEI IOW - e e ettt ettt e e et e s e s e s e s eeeaeeeeaeaneeneanens 59
FPU Error: Call |eVel EXCEEAEM -« uenieiitiii ittt et ettt ettt e et ae et e e ene e eeeaeeneeneanens 59

(S S U =g o 82 D L=1V (o7 =38 0] B [0 7= Vo =Y U S 59
FPU Error: FUNCHON NOt Qe iNe0 - v eeriiiiii i i it e ettt et et e et esaa e eaneeaseeaseaaneanneans 59
FPU Error: Incomplete INStruCtioN .. .oovvvveeeiii e 59
FPU Error: Invalid parenthesis « . . voveeieiiiii 59
FPU Error: Memory Allocation failed.........ccuuvuiiiiiiiii 59

S e N =T 0] 6D. (O] ndl aT0) e (=111 8T= "o PR 59
Reference Guide: Auto Step and Conditional Breakpoints -« --..cccovimmiimmmmeniiiiiiiire e, 60
Auto Step Conditions Dialog -+ - vveeeerrmmiiieiiiii i 60

Micromega Corporation 4 uM-FPU64 IDE User Manual r411

Installing and Connecting

[T = Y21 Lo] AT 18 TS (0 L0170 o 61

[T == 1o] T 7Y S 61

[=1 T 011 | PSPPI 62
Break on Register Change. v 62
Break 0N EXPrESSION - cvvereieeiii et 62
Break 0N SHHNG - eeeeeee e 64
Reference Guide: Programming Flash Memory «..ccccooo s 65
T T3 £ 0] T AT AT Vo [0 1 RS 65
Reference Guide: Setting uM-FPU64 Parameters.---....ccmmmmmemmmiiniiiminieessss s 67
Set Parameters DIialog «.oceevvveeiiiiiiiii s 67
L= Y1 T (= oY= | PP 67
Trace on Reset (FOreground) eeeeeeeeiie e 67
Trace Inside FUNctions (FOreground)ueeeeeeeiiiiiiiiiiiiii i 67
Trace on Reset (BaCKGrouNd) ... vvveevreeiiieiiiie e 67
Trace Inside Functions (Background) «......ooovveuiiiiiiiiii e, 67
Disable Busy/Ready status on SOUTouuuiiiiiiiiiiii e 67
Use PIC Format (IEEE 754 is default)ccoooeeiiiiiiii 68
Idle Mode Power Saving ENable -« . oovoverieeiiii 68
Sleep Mode Power Saving ENabled 68

[T =Y 7= = 1 [0 1 = 68
=Y = =AY, (o Yo 1= S PP 68

2 O o [[= Y= 1 68
N1 (0 3 7= T 1Y, 0o = T 68
3.3V / 5V (Open Drain) Pin SEHNGS -« oreerrrremimiiniieeiiieiiiiii e 68
Restore Default SettiNgS .- o vvveeerermiii 69
Disable Busy/Ready status on SOUT not enabledcoooviiiiiiiiiiiii 69
Reference Guide: SERIN and SEROUT SUPPOIt...ctrrrrrrsismerssnesssnessssnesssssesssnsssssssssssssssssssssssnssssanes 70
SERIN Window Setup OptionScooviriiiii s 70
SERIN Window - Text Input, Character Mode...........cooiiiiiiiiiiiiiii e, 70
SERIN Window - Text Input, NMEA MOE -+ ceeevviiiiiiiiiicieee e, 71
SEROUT Window Setup OptioNS - vvue e 72
SEROUT Window - Text Output Modecooovieieieiie 72
SEROUT Window - Terminal EmMUIation MOvoviiiiiiiiiiiiiiiieee et eaeenenas 73
SEROUT Window - Table and Graph Modecoooooeiiiiii 74
SEROUT Device 1, Device 2, Device 3 Setup Options . .vvvevveiiiiiiiiiiii e, 75

Micromega Corporation 5 uM-FPU64 IDE User Manual r411

Installing and Connecting

Installing the uM-FPU64 IDE Software

The uM-FPU64 IDE software can be downloaded from the Micromega website at:
http://www.micromegacorp.com/umfpu64-ide.html

The download is called uM-FPU64 IDE xxx.zip (where xxx is the release number e.g. r406). Double-click or unzip

the file, then open the folder, and run the installer called uM-FPU64 IDE setup.exe. The software is installed in the

Program Flles (x86)> Micromega folder, and the Start Menu entry is Micromega.

Upgrading the uM-FPU64 Firmware

New versions of the uM-FPU64 IDE software may require that the uM-FPU64 firmware be upgraded to be
compatible with new features and the code generated by the compiler. If the IDE is connected to the FPU when it is
started, a version command will be sent automatically to check if the firmware requires updating. The check is also
done whenever the version command is executed or the Flash is programmed. If an update is required, the following

dialog will appear.

[~ N

uM-FPU64 IDE

L This IDE version requires uM-FPUG4 firmware release 404

== The connected uM-FPUG64 is firmware release 403

[Update Firmware] [Cancel

See the description of the Firmware Update... menu item in the Tools menu for additional information on
firmware upgrades. The required firmware files are included in the uM-FPU IDE installation.

Micromega Corporation 6 uM-FPU64 IDE User Manual r411

http://www.micromegacorp.com/ide-v3.html

Installing and Connecting

Connecting to the uM-FPU64 chip

Compiling can be done without a serial connection, but a serial connection between the computer running the IDE
and the uM-FPU64 chip is required for debugging and programming. For recent computers, the easiest way to add a
serial connection is using a USB to Serial adapter. Older computers with serial ports, or USB to RS-232 adapters
require a level converter (e.g. MAX232). The uM-FPU64 chip requires a non-inverted serial interface operating at
the same voltage as the FPU (i.e. if the FPU is operating at 3.3V, the serial interface must be a 3.3V interface). The
IDE communicates with the uM-FPU64 chip at 57,600 baud, using 8 data bits, no parity, one stop bit, and no flow
control.

Examples of suitable USB to Serial adapters include:
Sparkfun FTDI Basic Breakout - 3.3V http://www.sparkfun.com/
Parallax Parallax PropPlug http://www.parallax.com/

Connection Diagram

PC running
uM-FPU64 IDE

usB |

USB to Serial Adapter

TXD

usB RXD
GND
T:L 3.3V 3.3V
57,600 baud um-FPUG4 —

e Avop |2 0.1 uF
7 27 T

—{ANONVREF+ AVSS

—2{ ANIVREF- SEROUT

— osianz [y

—3lpe/ans p3f2_

—So7iana D22

—pe/ans p1}22_ Microcontroller
8vss pof2l_
5 70 Board

SEL VCAP

1% 5usy vss |12

Mrrcosct soutsispale

2lrrc osc2 siniscL b7
31 vbD scLk e
14 seriN sspis

0.1 uF f = 4.7-10uF

Micromega Corporation 7 uM-FPU64 IDE User Manual r411

http://www.sparkfun.com/
http://www.parallax.com/

Overview of uM-FPU64 IDE User Interface

Overview of uM-FPUG64 IDE User Interface

The main window of the IDE has a menu bar, and a set of tabs attached to five different windows. Clicking a tab will
display the associated window.

&) uM-FPUG4 IDE

File Edit Debug Functions Tools Window Help

tutoriall.fpu IOutputl Debug I Functions | Serial Trace

Source Window

The Source Window is the leftmost tab, and the filename of the source file is displayed on the tab. If the source
file has not been previously saved, the name of the tab will be untitled. If the source file has been modified since the
last save, an asterisk is displayed after the filename. The source file is stored as a text file with a default extension of
fou.

File Name Compile Button Target Menu Program Button Source Code

| | |
&) uM{FPUG4 IDE | J | (=@ = |

File Ekdit Debug Eﬁpﬁﬂﬁ%s Tools Vﬁndo&;/}ﬂgp
tutoriall.fpu [0 ut I Debug I FunctionsJ,Séal Tracel /
Target: [Arduino ¢ vl Program '

distance VAR Word ' Microcontroller variable definitions
arealn VAR Word

Radius equ F10 ' FPU register definitions
Diameter equ F11

Circumference equ Fl2

Area equ F13

Radius = distance / 1000 ' Calculations

Diameter = Radius * 2
Circumference = PI * Diameter
Area = PI * Radius * Radius

COM9-57600-8-N-1 Compiled successfully for Arduino
f T ’

Connection Status Status Message

The Source Window is used to edit the source code and compile the source code. Pressing the Compile button

Micromega Corporation 8 uM-FPU64 IDE User Manual r411

Overview of uM-FPU64 IDE User Interface

will compile the code for the target selected by the Target Menu. If an error occurs during compile, then an error
message will be displayed as the Status Message. All error messages are displayed in red.

Output Window

The Output Window is automatically displayed if the compile is successful. The status message will show that the
compile was successful. All normal status messages are displayed in blue.

Output Tab Button Bar Compiler Output Window

~
%) uM-FPUG4 IDE b)
File Edit Debug Functions Tools Windga Help
| tutorial3-link.fpé * | | Debug | Fyrétions | Serial Trace
UpdaTameiiies
// [--- uM-FPU&4 ---] Begin Register_Definitions -
#¢define Radius 10 // uM-FPU register b
#¢define Diameter 11 // uM-FPU register
#¢define Circumference 12 // uM-FPU register
#define Area 13 // uM-FPU register
// [--- uM-FPU&4 ---] End Register Definitions ®
// [--- uM-FPU€4 ---] Begin Function_Definitions =
#define GetDiameter 1 // uM-FPU user function
#define GetCircumference 2 // uM-FPU user function
#¢define GetArea 3 // uM-FPU user function
// [--- uM-FPU&4 ---] End Function Definitions
// [--- uM-FPU&4 ---] Begin Variable Definitions &
int distance; // signed word variable
int arealn; // signed word variable
// [--- uM-FPU€4 ---] End Variable Definitions
// distance var word ' Microcontroller variable definitions
// arealn var word
/7
// Radius equ F10 ' FPU register definitions
// Diameter equ Fl1
// Circumference equ F12
// Rrea equ F13
'
// GetDiameter func 1 ' Function prototypes
// GetCircumference func %
// GetRArea func %
/7
// #function GetDiameter ' Function 1
/7 Diameter = Radius * 2
// SELECTR, 11 -
COM4-57600-8-N-1 Compiled successfully for Arduino
Y Y >
T 1
Connection Status Status Message

If the code was generated for a target microcontroller, the Select All and Copy buttons can be used to copy the
code from the window so it can be pasted into the microcontroller program. Alternatively, the code can be copy-and-
pasted a section at a time by doing a text selection and using the Copy button. The Remove Source button can be
used to remove the source code lines that are included as comments. The Update Target File... button is used to
update a target file with the generated code.

Micromega Corporation 9 uM-FPU64 IDE User Manual r411

Overview of uM-FPU64 IDE User Interface

Debug Window

The Debug Window is used for debugging. It displays the instruction trace, reset and breakpoint information, and
the contents of the FPU registers, string buffer and status value.

Trace Display Register Display
Debug Display Button Bar Selected Name Formatted Value
=" al
i) uM-FPUG4 IDE lechl B 3
File Edit Debug Functions Tools Window |Help
l tutoriafl.fpu I Output‘ Debig | Functions I Serial frace‘
@ Foreground
olle e =
] | B LR} | 0 \!(egisters © Background [Read R-e?y{ers H Clear]
~ [X_Ro 3.141593 -
RESET: 2013-02-05 10:36:41 R1l TEFFFFFF \:\
- R2 JEFFFFFF
FO3C SYNC:| 92 R3 JEFFFFFF
F3 VERSION R4 JEFFFFEF
F2754D2D4650 READSTR: "uM-FPU64 r404" = RS JEEFEFEFE
553634207234 Ré TFFFFFFF
303400 [} R7 JEFFFFFF
014D SELECTA, Area R8 JFEFEFEF
SE LOADPI — R9 TFFEFFFFE
29 FSETO R10 Radius 9.84252
010A SELECTA, Radius R11 Diameter 3 2119
3219 FSETI, 25 A Rl2 Circumference 76.0856
5605 FCNV, CM_IN R13 Area 3.141593
1Fgo FICR, 0 R14 JEFFFFFFE
F2392E383432 READSTR: "9.84252" R1S JEFFFFFF
35%200 - R16 JEFFFFEF
" R17 JEFFFFEF N
distance VAR Word ' Microcont... a T = Red
arealn VAR Word F emporary Registers
® 2 T1 3333333 R
Radius equ F10 ' FPU regis...| 12 JEEFEEEE (3
Diameter equ Fl1 I3 JEEFEEEE
Circumference equ Fl12 I3 JEFEETEE
Area equ F13 IS JEFFFFEF
ad Té TEFFFFFE b
String Length: 7 String Selection: 0, 7 Status: 80 ----
7lcl. Jolelsle])
COM9-57600-8-N-1) Reset
Y Y
? T 4 4
T T I
Connection Status String Buffer Status Message Status Byte

The Trace Display shows messages and instruction traces. The Reset message includes a time stamp, is displayed
whenever a hardware or software reset occurs. Instruction tracing will only occur if tracing is enabled. This can be
enabled at Reset by setting the Trace on Reset option in the Functions> Set Parameters... dialog, or at any
time by by sending the TRACEON instruction.

The Debug Display provides support for source level debugging with hardware breakpoints.

The Register Display shows the value of all registers. Register values that have changed since the last update are
shown in red. The String Buffer displays the FPU string buffer and string selection, and the Status Byte shows
the FPU status byte and status bit indicators. The Register Display, String Buffer, and Status Byte are only
updated automatically at breakpoints. They can be updated manually using the Read Registers button.

Micromega Corporation 10 uM-FPU64 IDE User Manual r411

Overview of uM-FPU64 IDE User Interface

Functions Window

The Functions Window shows the function code for all new functions and stored functions. It also can be used
to program the functions into Flash memory on the FPU.

Function List

Name New Size Stored Size Compare New Function Code Button Bar
| al
%] uM-FPUG4 IDE L =R |
File EHit Debug Fungtions Tools [Window Help
‘ GCdistance.fpu * | Output h&gbug ‘ Functigns | Serial Traca
Functjons: New: 423 Bytes Stored: bytes New Function 5: readNMEA ®
Name New Stored = 0000 SEROUT, SET_BAUD, BAUD 4800 | Read Functions]
0 getID 2 2 vYes | 0003 SERIN, ENABLE]
ni — |0005 SERIN, READ NMER
1 get:)lst.ar.lce 492 4°2 Yes 0007 BRA, LT, $0005
2 getlocation 181 181 Yes 000A STRCMP, "GPRMC" [Program Flash]
3 getlatlong &7 [y Yes 0011 BRA, NZ, $0005
4 radiansToDM 38 38 Yes 0014 STRFIELD, 3 Overwrite Stored Functions
5 readNMEA 32 32 Yes ggig Zgﬁmﬁg "A;oos © Always
E ' . 5 _
& parseGFRMC 18 18 Yes 001C FCALL, 6) Confirm with User
7 NMER Degrees 43 43 Yes 001E SERIN, DISABLE © Never
g 0020
9
10
11 I
12 .
13 Stored Function 5: <read from FPU>
14 0000 SEROUT, SET_BAUD, BAUD_480C ~
15 0003 SERIN, ENABLE NMEA F
16 0005 SERIN, READ NMER
17 0007 BRA, LT, $0005
000A STRCMP, "GPRMC" -
s 0011 BRA, NZ, $0005 3
19 0014 STRFIELD, 3
20 0016 STRCMP, "A" 4
51 0019 BRA, Nz, $0005
55 001C FCALL, &
001E SERIN, DISABLE
23 0020
24
25
268 = -
COM9-57600-8-N-1 Programming completed.
" ? h V]
I I
Connection Status Status Message Stored Function Code

The Function List provides information about each function defined by the compiler and stored on the FPU. The
New Function Code displays the FPU instructions for compiled functions, and the Stored Function Code
displays the FPU instructions for functions stored on the FPU. The Read Functions button is used to read the
functions currently stored on the FPU, and the Program Functions button is used to program new functions to the
uM-FPU64 chip.

Serial Trace Window

The Serial Trace Window shows a trace of the serial data exchanged between the IDE and the uM-FPU64 chip.
It’s provided mainly for diagnostic purposes.

Micromega Corporation 11 uM-FPU64 IDE User Manual r411

Tutorial 1: Compiling FPU Code

Tutorial 1: Compiling FPU Code

This tutorial takes you through the process of compiling uM-FPU64 code for a few simple examples. Various IDE
features are introduced as we go through the tutorial. For a more complete description of specific features, see the

the Reference Guide sections later in this document.

This tutorial uses Arduino with a SPI interface as the target. If you’re working with a different microcontroller or
compiler, the procedures are the same, but the output code for the selected target will be different. The figure below
shows the process of developing FPU code using the IDE.

Compiling uM-FPU64 code

uM-FPU64 IDE

tutorial1.fpu

distance VAR Word ' Microcontroller variable definitions
arealIn VAR Word

Radius equ F10 ' FPU register definitions

Diameter equ F11

Circumference equ F12

Area equ F13

Radius = distance / 1000
Diameter = Radius * 2
Circumference = PI * Diameter
Area = PI * Radius * Radius

' calculations

Compile
Output window

[/ mmmmm e UM-FPU Register Definitions ———---==-—————ooommem
#define Radius 10 // WM-FPU register

#define Diameter 11 // uM-FPU register
#define Circumference 12 // uM-FPU register
#define Area 13 // uM-FPU register
[/ e variable Definitions

int distance;
int arealn;

// signed word variable
// signed word variable

e Generated Code
// distance VAR Word ' Microcontroller variable definitions
// arealn VAR Word
/1
// Radius equ F10 ' FPU register definitions
// Diameter equ FI1
// circumference equ F12
// Area equ F13
/1

// Radius = distance / 1000 ' Calculations
Fpu.write(SELECTA, Radius, LOADWORD);
Fpu.writeWord(distance);

Fpu.write(FSET0, LOADWORD);

Fpu.writeWord(1000);

Fpu.write(FDIV0);

// Diameter = Radius * 2

Fpu.write(SELECTA, Diameter, FSET, Radius, FMULI, 2);
// Circumference = PI * Diameter

Fpu.write(SELECTA, Circumference, LOADPI, FSETO, FMUL, Diameter);
// Brea = PI * Radius * Radius

Fpu.write(SELECTA, Area, LOADPI, FSETO, FMUL, Radius);
Fpu.write(FMUL, Radius);

7

Copy

Paste

Steps
» Create FPU source code file
« Compile the FPU code

+ Copy generated code to microcontroller program

+ Compile microcontroller program
+ Program the microcontroller

uM-FPUG64 Chip

Microcontroller Development Tool
tutorial1.bs2

#include <SPI.h>
#include <Fpu64.h>
#include <FpuSerial6d.h>

#define DiameterIn 10 // diameter in inches

#define Circumference 11 // circumference
#define Area 12 // area
#define Pi 13 // constant pi

void setup()
{
Serial.begin(9600);
serial.println(”Sample");

SPI.begin();
Fpu.begin();

if (Fpu.sync() == SYNC_CHAR)
FpuSerial.printVersionln();

else

{

Serial.println("FPU not detected");
while(1) ; // stop if FPU not detected
}
}

void loop()
byte diameterCm;

// Load constant for later use.
Fpu.write(SELECTA, Pi, LOADPI, FSETO);

// Get diameter in centimeters. The value would typically come from a sensor
// reading, but in this example an assumed value of 25 is used.

diametercm = 25;

Serial.print("\r\nDiameter (cm): ")

Serial.println(diametercCm, DEC);

// Convert inches to centimeters
Fpu.write(SELECTA, DiameterIn, FSETI, diameterCm);
Fpu.write(FCNV, 5);

serial.print('Diameter (in.): ")i
FpuSerial.printFloatln(0);

// circumference = diameter * pi

Fpu.write(SELECTA, Circumference, FSET, DiameterIn);
Fpu.write(FMUL, Pi);

serial.print(”Circumference (in.): ");
FpuSerial.printFloatln(0);

// area = (diameter / 2)°2 * pi
Fpu.write(SELECTA, Area, FSET, DiameterIn);

Program

Microcontroller

e0®w RowemN
. 1

DIGITAL (PWM~)

Micromega Corporation

12

uM-FPUG64 IDE User Manual r411

Tutorial 1: Compiling FPU Code

Starting the uM-FPU64 IDE

Start the uM-FPU64 IDE program. The program will open to an empty Source Window with the filename set to
untitled. Since we are using Arduino for this tutorial, use the Target Menu to select Arduino—SPI.

The Connection Status is shown at the lower left of the window. A connection is not required to use the
compiler, it’s only required for debugging and programming.

Entering a Simple Equation

The uM-FPU64 IDE has predefined names for the registers in the FPU.
FO,F1,F2,... F127 specifies registers 0 through 255, and that the register contains a floating point value
LO,L1,L2,... L127 specifies registers O through 255, and that the register contains a long integer
U0, U1,U2, ... U127 specifies registers 0 through 255, and that the register contains an unsigned long integer

Using these pre-defined names, you can enter a simple equation directly. To add the floating point values in register
1 and register 2, and store the result in register 1, you can enter the following equation:

Fl = F1 + F2

The Source Window should look as follows:

r ” Y
&) uM-FPUG4 IDE [ESREEN

File Edit Debug Functions Tools Window Help

untitled * |Output l Debug l Functionsl Serial Trace‘

Target: [Arduino-SPl v] Program

|F1 = F1 + £

Notice that the status line at the bottom of the window now reads Input modified since last compile. This lets you
know that you must compile to generate up-to-date output code. Click the Compile button. If the compile is
successful, the Output Window will be displayed, and the status message will be Compiled successfully for
Arduino-SPI.

If an error is detected, an error message will be displayed in red. If you get an error message, check that your input
matches the Source Window above, then click the Compile button again.

The Output Window should look as follows:
(&) uM-FPUG4 IDE [ESREERT)

File Edit Debug Functions Tools Window Help

untitled *

| Debug I Functions | Serial Trace‘

[== Generated Code ---------—————————————————————
// F1 = F1 + F2
Fpu.write (SELECTA, 1, FADD, 2);
1/

The expression F1 = F1 + F2 has been translated into Arduino code. The code selects FPU register 1 as register
A, then adds the value of register 2 to register A. You’ve successfully compiled your first compile. (If you want to
see the code generated for a different target, go back to the Source Window and select a different target from the
Target Menu.)

Micromega Corporation 13 uM-FPU64 IDE User Manual r411

Tutorial 1: Compiling FPU Code

Defining Names

Math expressions can be easier to read when meaningful names are used. The IDE allows you to define names for
FPU registers, microcontroller variables and constants.

Registers are defined using the EQU operator and one of the predefined register names. Microcontroller variables are
defined using the VAR operator. For example, the following statements define TOTAL as a floating point value in
register 1, and COUNT as a byte variable on the microcontroller.

TOTAL EQU Fl1
COUNT VAR BYTE

The following statement would generate code to read the value of COUNT from the microcontroller, convert it to
floating point and add it to the TOTAL register.

TOTAL = TOTAL + COUNT

Sample Project

Suppose we have a distance measuring device that returns a number of pulses proportional to distance. It measures
distance from O to 30 inches and returns 1000 pulses per inch. We intend to use this device to measure the radius of a
circle, then calculate the diameter, circumference and area using the FPU. The results are displayed in units of inches
to three decimal places.

Calculating Radius

The number of pulses returned by the distance measuring device ranges from 0 to 30000 (30 inches x 1000 pulses
per inch), so we will need to use a word variable to store the value on the microcontroller. Since results will be
displayed in inches, we’ll divide the distance value by 1000 once it’s loaded to the FPU chip.

Create a new source file using the File> New... menu item, and enter the following code:

distance VAR word
Radius EQU F10

Radius = distance / 1000

The Source window should look as follows:
&) uM-FPUG4 IDE SRICEL X
File Edit Debug Functions Tools Window Help

untitled * 'Output | Debug I Functions] Serial Trace‘

Target: [Arduino-SPI v] Program

distance var word
Radius equ F10

Radius = distance / 100(|

Save the source file using the File> Save menu item. Save the file as tutorial1 (with .fp4 extension added
automatically).

Micromega Corporation 14 uM-FPU64 IDE User Manual r411

Tutorial 1: Compiling FPU Code

Click the Compile button.

The Output Window should look as follows:

-
/&) uM-FPUB4 IDE S | E S
File Edit Debug Functions Tools Window Help

tutoriall-code2.fp4 OUtPUtl Debug I Functions I Serial Trace

1/ uM-FPU Register Definitions --——--——--——-——————-
#¢define Radius 10 // uM-FPU register
- Variable Definitions ---------———————————c—om——
int distance; // signed word variable
/- Generated Code --—-———————————————
// distance var word
// Radius equ F10
/7

// Radius = distance / 1000
Fpu.write (SELECTA, Radius, LOADWCRD);
Fpu.writeWord(distance);

Fpu.write (FSET0, LOADWORD):;
Fpu.writeWord(1000);

Fpu.write (FDIVO);

/7

The generated code does the following:
SELECTA, Radius
select the Radius register as register A
LOADWORD, distance, FSETO

load the 16-bit distance variable to the FPU, convert it to floating point, and store in Radius register
LOADWORD, 1000, FDIVO

load the floating point constant 1000, and divide the Radius register by that value

Copying Code to the Microcontroller Program

In this example we are using Arduino as the target, so open the Arduino software and open the following file:
File> Examples> Fpu64> template. Save a new copy of the template file.

Copy the uM-FPU Register Definitions and Variable Definitions from the Output Window and paste them at
the start of the femplate program before the sefup() method.

Copy the Generated Code from the Output Window and paste it in the template program inside the 1oop ()
method.

Since we don’t actually have the sensor described, we’ll enter a test value at the start of the program. Add the
following line at the start of the Loop () method.

distance = 2575;

To print the result, add the following lines immediately after the code you copied.

Serial.print("Radius: ");
FpuSerial.PrintFloat(0);

The FpuSerial.PrintFloat method displays the value of register A as a floating point number.

Micromega Corporation 15 uM-FPU64 IDE User Manual r411

Tutorial 1: Compiling FPU Code

The main section of your Arduino program should look as follows:

#include <SPI.h>
#include <Fpu64.h>
#include <FpuSerial64.h>

[/ =m e uM-FPU Register Definitions —-——-————————— oo
#define Radius 10 // uM-FPU register

[/ =m e Variable Definitions ———————— -
int distance; // signed word variable

[/ == m e setup ———————————

void setup()

{
Serial.begin(9600);
Serial.println("Sample");

SPI.begin();
Fpu.begin();

// Check for synchronization and display FPU version
// (note: this is optional code)

if (Fpu.sync() == SYNC CHAR)
FpuSerial.printVersionln();

else

{

Serial.print("uM-FPU not detected");
while(l) ; // stop if FPU not detected

void loop()

{
distance = 2575;
[/ =m e Generated Code ———————
// distance var word
// Radius equ F10
//

// Radius = distance / 1000

Fpu.write (SELECTA, Radius, LOADWORD);
Fpu.writeWord(distance);
Fpu.write(FSET0, LOADWORD) ;
Fpu.writeWord(1000);
Fpu.write(FDIVO);

//

Serial.print("\r\nRadius: ");
FpuSerial.printFloat(0);

Serial.println("\r\nDone.");
while(1l) ;
}

Micromega Corporation 16 uM-FPU64 IDE User Manual r411

Tutorial 1: Compiling FPU Code

Running the Program

Run the Arduino program. The following output should be displayed in the terminal window.

& coM3 = B8] X

Sample
uM-FPU64 r404

Radius: 2.575
Done.

Calculating Diameter, Circumference and Area

Now that we have the initial program, let’s add the calculations for diameter, circumference and area. Add the
following register definitions in the start of the futorial1.fpu:

Diameter equ F2
Circumference equ F3
Area equ F4

The area of a circle is twice the radius, so we add the following line to calculate diameter:
Diameter = Radius * 2

The circumference of a circle is equal to the value pi (i) times the diameter. The IDE has a pre-defined name for s,
called PI, so you can simple enter the following line to calculate circumference:

Circumference = PI * Diameter

The area of a circle is equal to pi (;t) times radius squared. The POWER function could use to calculate radius to the
power of 2, but for squared values it’s easier and more efficient to simply multiply the value by itself. Enter the
following line to calculate the area:

Area = PI * Radius * Radius

Finally, we’ll read the Area value back to the microcontroller as a 16-bit integer and print the result. To do this we
first add the following definition for the microcontroller variable:

arealn VAR Word

Next, we add the following line to convert the Area value to long integer and send the lower 16-bits back to
microcontroller.

arealn = Area

Micromega Corporation 17 uM-FPU64 IDE User Manual r411

Tutorial 1: Compiling FPU Code

The Source Window should look as follows:

.
|i&) uM-FPUG4 IDE

File Edit Debug Functions Tools

tutoriallb.fpu *

Window Help

Output l Debug l Functions] Serial Tvace‘

Radius = distance / 1000
Diameter = Radius * 2

Area = PI * Radius * Radius

arealn = Area

Click the Compile button.

Circumference = PI * Diameter

Target: | Arduino v Program
distance var Word

arealn var| Word

Radius equ F10

Diameter equ F11

Circumference equ F12

Area equ F13

Copy Revised Code to the Microcontroller Program

Copy the uM-FPU Register Definitions and Variable Definitions from the Output Window and paste them at the
start of the femplate program before the setup () method (replacing the previous definitions).

Copy the Generated Code from the Output Window and paste it in the template program inside the Loop ()
method (replacing the previous code).

Add a Serial.print and FpuSerial.printFloat statement after each of the following values are
calculated on the FPU: Radius ,Diameter,Circumference and Area. FpuSerial.printFloat(63)
is used to display the floating point values in a field six characters wide with digits to the right of the decimal point.

For example:

Serial.print("Radius: ");
FpuSerial.PrintFloat(63);

Add Serial.print statements for the Arduino variable areaIn.

Serial.print("\r\narealIn: ")
Serial.print(arealn);

The main section of your Arduino program should look as follows:

#include <SPI.h>
#include <Fpu64.h>

#include <FpuSerial64.h>

[/ =m e
#define Radius 10
#define Diameter 11
#define Circumference
#define Area 13
[/ =mmm e

uM-FPU Register Definitions -—-———-——————————

//
//
12 //
//

uM-FPU register
uM-FPU register
uM-FPU register
uM-FPU register

Micromega Corporation

18

uM-FPUG64 IDE User Manual r411

Tutorial 1: Compiling FPU Code

int distance; // signed word variable
int arealn; // signed word variable
[/ = m e Setup —————— =

void setup()

{
Serial.begin(9600);
Serial.println("Sample");
SPI.begin();
Fpu.begin();
// Check for synchronization and display FPU version
// (note: this is optional code)
if (Fpu.sync() == SYNC_CHAR)
FpuSerial.printVersionln();
else
{
Serial.print("uM-FPU not detected");
while(l) ; // stop if FPU not detected
}
}
[/ =mmm e 1OOp === =

void loop()

{
distance = 2575;

[/ =mmm e Generated Code —————————
// distance var Word
// arealn var Word
//
// Radius equ F10
// Diameter equ F11
// Circumference equ F12
// Area equ F13
//

// Radius = distance / 1000

Fpu.write (SELECTA, Radius, LOADWORD);
Fpu.writeWord(distance);
Fpu.write(FSET0, LOADWORD) ;
Fpu.writeWord(1000);
Fpu.write(FDIVO);
Serial.print("\r\nRadius: ")
FpuSerial.printFloat(63);

// Diameter = Radius * 2

Fpu.write(SELECTA, Diameter, FSET, Radius, FMULI, 2);
Serial.print("\r\nDiameter: ");
FpuSerial.printFloat(63);

// Circumference = PI * Diameter

Fpu.write(SELECTA, Circumference, LOADPI, FSETO, FMUL, Diameter);
Serial.print("\r\nCircumference: ");

FpuSerial.printFloat(63);

Micromega Corporation 19 uM-FPU64 IDE User Manual r411

Tutorial 1: Compiling FPU Code

// Area = PI * Radius * Radius

Fpu.write(SELECTA, Area, LOADPI, FSETO, FMUL, Radius);

Fpu.write(FMUL, Radius);
Serial.print("\r\nArea: ")
FpuSerial.printFloat(63);

//

// arealn = Area

Fpu.write(SELECTA, 0, FSET, Area, F FIX);
Fpu.wait();

Fpu.write (LREADWORD) ;

areaIn = Fpu.readWord();
Serial.print("\r\narealn: ")
Serial.print(arealn);

//

Serial.println("\r\nDone.");
while(1l) ;

}

Running the Revised Program

Run the Arduino program. The following output should be displayed in the terminal window:

r B
@ COM3 o | B |
|
Sample

uM-FPUG4 r404

Radius: 2.575
Diameter: 5.150
Circumference: 16.179
Area: 20.831
arealn: 20
Done.

Area is displayed as 20.831, but areaIn is displayed as 20. This is because when a floating point number is
converted to a long integer it is truncated, not rounded. If you prefer the value to be rounded, then use the ROUND

function before converting the number. In the FPU source file, replace:

with:

arealn = Area

areaIn = round(area)

Compile the FPU code, copy and paste the new code to the Arduino program. Run the program again. The following
output should now be displayed in the terminal window:

Saving the Source File
Use the File > Save command to save the file.

This completes the tutorial on compiling code for the uM-FPU64 chip. With the information gained from this
tutorial, and more detailed information from the reference section, you should now be able to use the IDE to create
your own programs.

Micromega Corporation 20

uM-FPUG64 IDE User Manual r411

Tutorial 2: Debugging FPU Code

Tutorial 2: Debugging FPU Code

This tutorial takes you through some examples of debugging FPU code using the uM-FPU64 IDE. We will use the
Arduino program created in the previous tutorial for debugging.

Making the Connection

For debugging, the uM-FPU64 IDE must have a serial connection to the uM-FPU64 chip. Refer to the section at the
start of this document called Connecting to the uM-FPU64 chip.

Tracing Instructions

The Debug Window of the IDE can display a trace of all instructions as they are executed. By default, tracing is
disabled. It can be enabled at Reset by setting the Trace on Reset (Foreground) option in the Functions> Set
Parameters... dialog, or it can be turned on or off at any time by sending the TRACEON or TRACEOFF instruction.

For this tutorial we will use the Trace on Reset (Foreground) option. Select the Functions> Set
Parameters... menu item, and enable the Trace on Reset (Foreground) option as shown below.

r ~
Set Parameters

["| Break on Reset

Trace on Reset (Foreground)

("] Trace Inside Functions (Foreground)
("] Trace on Reset (Background)

("] Trace Inside Functions (Background)

Interface Mode
@) SEL pin selects interface (default)
) 2C interface (SEL pin ignored)
_) SPIinterface (SEL pin ignored)

("] Disable Busy/Ready Status on SOUT I2C Address: (8
("] Use PIC format (IEEE 754 is default)
Idle Mode Power Saving Enabled Auto-Start Mode
|| Sleep Mode Power Saving Enabled If SEL pin is Low at Reset:
External Input - || Disable Debug
@ Rising Edge

Digital Pin 8 ("] Call Function: | 0

() Falling Edge

3.3V / 5V (Open Drain) Pin Settings
SPT D22:D9 (44-pin) D8:D0 (28-pin)
SOUT 222120191817161514131211109 87 6 54 3 21

J bllolloiekiass sanaseakl 35

[Restore Default Settings]

[OK] [Cancel]

Select the Debug Window, and click the Clear button above the Debug Trace to clear the trace area. Now run
the tutorial1 program that you developed in the previous tutorial. An instruction trace will be displayed in the
Debug Trace area. After the program stops running, click the Read Registers button to update the Register
Display, String Buffer, and Status. Scroll up to the beginning of the Debug Trace.

Micromega Corporation 21 uM-FPU64 IDE User Manual r411

Tutorial 2: Debugging FPU Code

The Debug Window should look as follows:

&) uM-FPUG4 IDE o |@| =
File Edit Debug Functions Tools Window Help
ltutoriallb.fp4 | Outputl Debug lFunctions I Serial Trace‘
@ Foreground
e o W - =
]] @ # {} | Trace || Clear | p gisters © Background Read Registers H Clear]
240B FMUL, Diameter ~ |AX RO 00000014 -
1F3F FIOR, &3 Rl JEFFFEFF b
F231362E3137 READSTR: "16.179" R2 JEFFFEFF
3900 R3 JEFFFEFF
010D SELECTA, Area R4 JEFFFFFFE
SE LOADPI RS JEEFFEFFFF
29 FSETO RE JFFFFFEF
2402 FMUL, Radius R7 JEFFFFFF
2402 FMUL, Radius RE JFEFFEFF
1F3F FICR, €3 R9 JEFFFFFF
F232302E3833 READSTR: "20.831" R10 . Radius
3100 R11 1
0100 SELECTA, 0) R12
200D FSET, Area 2 R13 20.83072
61 FIX R14 JEFFFEFF
990014 LREADWORD: 20 3 R1S JEFFFFFF
- R16 JEEFFFFFF
. R17 JFFFFFFF i
distance var Word e s Regist
arealn var Word emporary Registers
= Tl JEFFFFFF -
Radius equ F10 12 JEFEEFEE
Diameter equ F11 I3 JEEEEEEE
Circumference equ Fl2 14 JEFEEEEE
Area equ F13 I5 JFFFFFFF
2 Té TEFFFFFF ai
String Length: 6 String Selection: 0, 6 Status: 80 ----
COM9-57600-8-N-1 Reset

The reset message is displayed at the top of the screen. Every time the FPU resets, a reset message is displayed with
a time stamp. The instruction trace shows the hexadecimal bytes of the instruction on the left, followed by the
disassembled instruction. If a source file has been compiled with symbol definitions, these symbols are used when
displaying the instructions. For instructions that read data from the FPU, the trace will also display the data being
sent.

Compare the instructions in the Debug Trace to the tutorial1 program. Tracing is very useful for checking the
actual sequence of instruction executed by the FPU. Many programming errors can often be found simply by
examining the trace.

Breakpoints

A breakpoint stops execution of FPU instructions. A BREAK message is displayed in the Debug Trace and the
Register Display, String Buffer, and Status are automatically updated. This enables you to examine the state
of the FPU at that point, and then continue execution, or to single step through the code one instruction at a time.

To experiment with breakpoints, add the following statement to the futoriall program at the start of the 1oop ()
method.

Fpu.write(F_BREAK);

Run the tutoriall program again. A breakpoint occurs immediately after printing the version string. By examining

Micromega Corporation 22 uM-FPU64 IDE User Manual r411

Tutorial 2: Debugging FPU Code

the Debug Window you can see the following:

the debug trace shows the Reset message and a trace for all previously executed instructions
the debug trace shows the BREAK message in red

the version string is displayed in the string buffer

the AX beside register O shows that it’s currently selected as register A and register X
register 0 is displayed in red to indicate it has a new value

the value in register O is the version code

all other registers are NaN (Not-a-Number)

Single Stepping
By single stepping through the FPU code you can see exactly what’s happening. The following example steps
through a few instructions.

Click the Step button (or type the Enter button) to single step. The Debug Window will change as follows:

the debug trace shows the SELECTA , Radius instruction and the BREAK message

the A beside register 10 shows that it’s now selected as register A

register O is displayed in black since it hasn’t changed since the last breakpoint

To experiment with breakpoints and single stepping, add the following line to your program at a spot that
you want a breakpoint to occur at.

Click the Step button (or type the Enter button) to single step. The Debug Window will change as follows:

the debug trace shows the LOADWORD, 2575 instruction and the BREAK message
the A beside register 10 shows that it’s now selected as register A

register 0 is displayed in red since it has a new value

the value in register 0 is 2575.0

Click the Step button (or type the Enter button) to single step. The Debug Window will change as follows:

the debug trace shows the FSETO instruction and the BREAK message

register O is displayed in black since it hasn’t changed since the last breakpoint
register 10 is displayed in red since it has a new value

the value in register 10 is 2575.0

To continue normal execution, click the Go button.

You can experiment further by moving the BREAK instruction to another point in your program, or by adding
multiple breakpoints. More advanced single step capabilities are available using the Auto Step button. See the
section entitled Reference Guide: Debugging uM-FPU64 Code for more information.

This completes the tutorial on debugging uM-FPU64 code. With the information gained from this tutorial, and more
detailed information from the reference section, you should now be able to use the IDE to debug your own

programs.

Micromega Corporation 23 uM-FPU64 IDE User Manual r411

Tutorial 3: Programming FPU Flash Memory

Tutorial 3: Programming FPU Flash Memory

User-defined functions and parameter bytes can be programmed in Flash memory on the uM-FPU64 chip. This
tutorial takes you through an example of creating some user-defined functions.

Making the Connection

For programming Flash memory, the uM-FPU64 IDE must have a serial connection to the uM-FPU64 chip. Refer to
the section at the start of this document called Connecting to the uM-FPU64 chip.

Defining functions

In the previous tutorials we developed and tested code to calculate the diameter, circumference, and area of a circle.
For this demonstration, we’ll define each of these calculations as a separate function.

The #function directive is used to define a function. It specifies the number of the function (0 to 63) and an
optional name.

#FUNCTION 1 GetDiameter
All code that appears after a # function directive will be stored in that function, until the next # function
directive, an #end directive, or the end of the source file. There’s an implicit RET instruction at the end of all

functions.

Functions can call other functions. To ensure that the function being called is already defined, function prototypes
can be included at the start of the program. Function prototypes are defined using the FUNC operator, which assigns
a symbol name to a function number. We’ll use function prototypes in this tutorial example. The following function
prototype defines GetDiameter as function number 1.

GetDiameter func 1

You can assign the function number explicitly, or use the % character to assign the next unused function number.

GetDiameter func 1
GetCircumference func %
GetArea func %

If a function prototype has been defined, the # function directive just uses pre-defined name.
#FUNCTION GetDiameter

Calling Functions
Functions are called by entering the function name in the source code.

e.g.
GetDiameter

Micromega Corporation 24 uM-FPU64 IDE User Manual r411

Tutorial 3: Programming FPU Flash Memory

Modifying the Code for Functions

Open the source file called tutorial1.fpu that you saved in the first tutorial. Add a function prototype for the three
functions called GetDiameter, GetCircumference, and GetArea. Add a #function directive before the
diameter, circumference and area calculations, and add an #end directive after the area calculation. Move the radius
calculation to after the function definitions, and add a call to the three functions. After each function call use the
directive #print float 63 to generate code to print the floating point value in register A. The source code will

now look as follows:

distance VAR Word
arealn VAR Word
Radius equ F10
Diameter equ F11
Circumference equ F12
Area equ F13
GetDiameter func 1
GetCircumference func %
GetArea func %

#function GetDiameter
Diameter = Radius * 2

#end

#function GetCircumference
Circumference = PI * Diameter
#end

#function GetArea

Area = PI * Radius * Radius
#end

// main program

Radius = distance / 1000
GetDiameter
GetCircumference

GetArea

arealIn = ROUND(area)

Save the file as tuforial3.fp4.

Microcontroller variable definitions

FPU register definitions

Function prototypes

Function 1

Function 2

Function 3

Calculations

Micromega Corporation

25 uM-FPUG64 IDE User Manual r411

Tutorial 3: Programming FPU Flash Memory

Compile and Review the Functions

Click the Compile button. In the Output Window, the function code is displayed as comments that show the uM-
FPU assembler code that was generated. This is the code that will be programmed to the FPU.

// #function GetDiameter Function 1
// Diameter = Radius * 2

// SELECTA, 11

// FSET, 10

// FMULI, 2

// #end

The Functions Window should look as follows:

P ™
&) uM-FPUG4 IDE (=[@] =]
File Edit Debug Functions Tools Window Help
I tutorial3.fpu * l Output I Debug l Functions | Serial Trace
Functions: New: 20 bytes Stored: 20 bytes New Function 3: GetArea
Name New Stored = 0000 SELECTA, 13 [Read Stored Functions]
0 ~| |0002 LOADPI
1 GetDiameter 6 6 ves| | [000% FSEIO
X 0004 FMUL, 10
2 GetCircumference 6 6 Yes 0006 FMUL, 10 [Program Functions]
3 GetArea 8 8 Yes 0008
4 Overwrite Stored Functions
5 © Always
6 1 @ Confirm with User
7 ©) Never
8
9
10
11 N
12
13 Stored Function 3: <read from FPU>
14 0000 SELECTA, 13
15 0002 LOADPI
16 0003 FSETO
17 0004 FMUL, 10
0006 FMUL, 10
18 0008
19
20
21
22
23
24
25
26 =
COM9-57600-8-N-1 Programming completed.
. A

The Function List shows that three functions have been defined. The New Function Code displays the FPU
instructions for the selected function. The Stored Function Code displays the FPU instructions for the function
stored on the FPU. If no function has previously been programmed, the Stored Function Code will be empty.
You can see the code for a different function by selecting it in the Function List.

Storing the Functions

Make sure that the Overwrite Stored Functions preference is set to Always (as shown in the figure above).
Click the Program Functions button to program the functions into Flash memory on the FPU. A status dialog will

Micromega Corporation 26 uM-FPU64 IDE User Manual r411

Tutorial 3: Programming FPU Flash Memory

be displayed as the functions are being programmed. If an error occurs, check the connection. You may need to
power the uM-FPU64 chip off and then back on to ensure that it has been reset properly before trying again.

Copy Revised Code to the Microcontroller Program

Copy the uM-FPU Register Definitions and Variable Definitions from the Output Window and paste them at the
start of the femplate program before the setup () method (replacing the previous definitions).

Copy the Generated Code from the Output Window and paste it in the femplate program inside the Loop ()
method (replacing the previous code).

Add a Serial.print and FpuSerial.printFloat (63) statement after each of the following values are
calculated on the FPU: Radius ,Diameter,Circumference and Area. FPU functions restore the register A
selection when they return, so a fpu_write(SELECTA, register) function call must be to select the
register before printing. For example:

Fpu.write(SELECTA, radius);
Serial.print("Radius: ")
FpuSerial.PrintFloat(63);

Add Serial.print statements for the Arduino variable areaIn.

Serial.print("\r\narealn: ")
Serial.print(arealn);

Running the Program

Copy the generated code from the Output Window to the Arduino program, replacing the diameter, circumference
and area calculations with function calls. Remember to also copy the uM-FPU Function definitions.

The Arduino program should now look as follows:
#include <SPI.h>

#include <Fpu64.h>

#include <FpuSerial64.h>

[/ = uM-FPU Register Definitions ——-——————— oo
#define Radius 10 // uM-FPU register

#define Diameter 11 // uM-FPU register

#define Circumference 12 // uM-FPU register

#define Area 13 // uM-FPU register

[/ = uM-FPU Function Definitions ——-——————— oo
#define GetDiameter 1 // uM-FPU user function

#define GetCircumference 2 // uM-FPU user function

#define GetArea 3 // uM-FPU user function

[/ =m e Variable Definitions —————————
int distance; // signed word variable

int arealn; // signed word variable

[/ =m e setup —=———————

void setup()

{
Serial.begin(9600);
Serial.println("Sample");

Micromega Corporation 27 uM-FPU64 IDE User Manual r411

Tutorial 3: Programming FPU Flash Memory

SPI.begin();
Fpu.begin();

// Check for synchronization and display FPU version
// (note: this is optional code)

if (Fpu.sync() == SYNC CHAR)
FpuSerial.printVersionln();

else

{

Serial.print("uM-FPU not detected");
while(l) ; // stop if FPU not detected

void loop()

{
distance = 2575;
[/ e Generated Code ———————— -
// // main program
//
// Radius = distance / 1000 ' Calculations

Fpu.write(SELECTA, Radius, LOADWORD) ;
Fpu.writeWord(distance);
Fpu.write(FSET0, LOADWORD);
Fpu.writeWord(1000);
Fpu.write(FDIVO);

Fpu.write(SELECTA, Radius);

Serial.print("\r\nRadius: ");
FpuSerial.printFloat(63);
//

// GetDiameter
Fpu.write(FCALL, GetDiameter);
Fpu.write(SELECTA, Diameter);

Serial.print("\r\nDiameter: "y,
FpuSerial.printFloat(63);
//

// GetCircumference
Fpu.write(FCALL, GetCircumference);
Fpu.write(SELECTA, Circumference);

Serial.print("\r\nCircumference: ");
FpuSerial.printFloat(63);
//

// GetArea
Fpu.write(FCALL, GetArea);
Fpu.write(SELECTA, Area);

Serial.print("\r\nArea: ")
FpuSerial.printFloat(63);
//

// areaIn = ROUND(area)
Fpu.write(SELECTA, 0, FSET, Area, ROUND, F_FIX);

Micromega Corporation 28 uM-FPU64 IDE User Manual r411

Tutorial 3: Programming FPU Flash Memory

Fpu.wait();
Fpu.write (LREADWORD) ;
areaIn = Fpu.readWord();

Serial.print("\r\narealIn: ")
Serial.print(arealn);
//

Serial.println("\r\nDone.");

while(1l) ;
}

Save the IDE source file as futorial3.fpu and save the Arduino program tutorial3, then run the program.

The following output should be displayed in the terminal window:

|\

)
com3 =& %

Sample
uM-FPU&4 r404

Radius: 2.575
Diameter: 5.150
Circumference: 16.179
Area: 20.831
arealn: 21
Done.

Note: If the FPU functions have not been programmed to Flash memory, the output will look like the following:

' ’\

com3 = 8] %

Sample
uM-FPU&4 r404

Radius: 2.575
Diameter: 2.575
Circumference: 2.575
Area: 2.575
arealn: -1
Done.

Since calling an undefined functions has no effect, register A remains unchanged after the Radius
calculation, and the same value prints out for each FpuSerial.printFormat call. The AreaIn value is
displayed as —1 because the value of Area is NaN, so ArealIn is returned as —1.

Micromega Corporation 29 uM-FPU64 IDE User Manual r411

Tutorial 3: Programming FPU Flash Memory

This completes the tutorial on storing user-defined functions. With the information gained from this tutorial, and
more detailed information in the reference section, you should be able to use the IDE to define your own functions
and program them to Flash on the uM-FPU64 chip.

Micromega Corporation 30 uM-FPU64 IDE User Manual r411

Reference Guide: Menus and Dialogs

Reference Guide: Menus and Dialogs

File Menu
Mew... Ctrl+n
Open... Ctrl+0
Open Recent 14
Save Ctrl+5

Save As... Ctrl+Shift+5

Exit Chrl+Q

New...
Creates a new source file and sets the name to untitled. If a previous source file is open and has been
changed since the last time it was saved, you will first be prompted to save the previous source file.

Open...

Opens an existing source file, using the file open dialog. If a previous source file is open and has been
changed since the last time it was saved, you will first be prompted to save the previous source file.

Open Recent
Provides a sub-menu that lists up to ten source files that were recently saved. Selecting a source file from
the sub-menu will open the file. If a previous source file is open and has been changed since the last time it
was saved, you will first be prompted to save the previous source file.

Save
Saves the source file. If the source file has not been previously saved, a file save dialog will be displayed.

Save As...
Displays a file save dialog and allows a new filename to be specified.

Exit
Causes the IDE to quit. If a source file is open, and has been changed since the last time it was saved, you
will first be prompted to save the source file.

Micromega Corporation 31 uM-FPU64 IDE User Manual r411

Reference Guide: Menus and Dialogs

Edit Menu
Undo Ctrl+2
Redo Ctrl+Shift+2
Cut Chrl4¥
Copy Ctrl+C
Clear

Select all Ctrl+A
Comment Ctrl+;

Find... Ctrl+F
Find Mext F3
Replace... Ctrl+H

Undo
Cancels the last edit in the Source Window.

Redo
Restores the edit cancelled by the last Undo.

Cut
Removes the selected text from the Source Window.

Copy
Copies the selected text from the Source Window to the clipboard.

Paste
Pastes the text in the clipboard to the current selection point in the Source Window.

Clear
Deletes the selected text from the Source Window.

Select All
Selects all of the text in the current text field.

Comment

Uncomment
Comment adds a semi-colon as the first character of every currently selected line in the Source
Window. This provides a way to quickly comment out a block of code. Uncomment removes the semi-
colon from the start of all selected lines. If all of the lines currently selected have a semi-colon as the first
character, the menu item is Uncomment, otherwise it is to Comment.

Find...
Brings up the Find Dialog.

Micromega Corporation 32 uM-FPU64 IDE User Manual r411

Reference Guide: Menus and Dialogs

T E)

Find What: ’ ‘

Replace With: ’ ‘ Replace

Search Conditions Replace Next
() From top

(%) From cursor Replace Al

[[Imatch case Close

i1

The Find dialog is a moveable dialog and can be placed alongside the Source Window and left open
when multiple find and replace operations are done. The Find What field specified the string to search for,
and the Replace With field specifies the string to replace it with. If the From top search condition is
selected, the search starts from the top of the window. The search condition will automatically change to
From cursor on the first successful match. If the From cursor search conditions is selected, the search
starts from the current cursor position. When the Match case option is selected, the search is case
sensitive. The following special characters can be used in the Find or Replace strings: \t for a tab
character, \r for end of line, and \ \ for backslash.

The Find Next button searches the Source Window for the next match. The Replace button replaces
the matched string. The matching text is highlighted on the first button press and replaced by the Replace
With string on the next button press. The Replace All button replaces all occurrences of the Find What
string with the Replace With string. The Close button closes the Find dialog.

Find Next
Finds the next match based on the current search conditions in the Find dialog.

Replace
Brings up the Find Dialog.

Micromega Corporation 33 uM-FPU64 IDE User Manual r411

Reference Guide: Menus and Dialogs

Debug Menu

Select Port...
Reset

Stop

Go

Step

Step Over
Step Out

Auto Step
Auto Step Conditions

Turn Trace On

Read Registers
Read Version
Read Checksum

Select Port...

Ctrl+Alt+R

F5

F8
Ctrl+F8

Ctrl+T

Displays the Port Setup dialog which is used to select the serial communications port.

-~

~

Port Setup
Serial Port: | COM9
Baud Rate: | 57600 Data Bits: g
Parity: |None Stop Bits: |1
[Cancel] [OK]
-
Reset

This menu item sends the reset command to the uM-FPU64.

Stop

Go

Step

Step Over
Step Out

These menu items have the same function as the Go, Stop, Step, Step Over and Step Out buttons in
the Debug Window.

Auto Step

Continues execution in auto step mode. See the section entitled Reference Guide: Auto Step and
Conditional Breakpoints for more details.

Auto Step Conditions

Micromega Corporation

34

uM-FPUG64 IDE User Manual r411

Reference Guide: Menus and Dialogs

Brings up the Auto Step Conditions dialog. See the section entitled
Reference Guide: Auto Step and Conditional Breakpoints for more details.

Turn Trace On
Turn Trace Off
These menu items have the same function as the Trace button in the Debug Window.

Read Registers
This menu item has the same function as the Read Registers button in the Debug Window.

Read Version
Displays the version of the FPU in the Debug Trace.

Read Checksum
Displays the checksum of the FPU in the Debug Trace.

Micromega Corporation 35 uM-FPU64 IDE User Manual r411

Reference Guide: Menus and Dialogs

Functions Menu

Select Port...

Program Flash Memory
Clear Flash Memory

Read Functions

Set Parameters...

Select Port...
Display the Port Setup dialog which is used to select the serial communications port.

Serial Port: | COM3 ~
Baud Rate: Data Bits:
Parity: Stop Bits:
| "Cancel | | ok |

Program Flash Memory
Has the same function as the Program Functions button. It programs the user-defined functions to the

FPU chip.

Clear Flash Memory
Clear all of the user-defined functions from Flash memory on the uM-FPU64 chip. A dialog will be
displayed requesting confirmation before the functions are cleared from memory.

Read Functions
Has the same function as the Read Functions button. It reads the flash memory and updates the function

list in the Function Window.

Set Parameters...
Brings up the Set Parameters... dialog to set the FPU parameter bytes. See the section entitled Reference

Guide: Setting uM-FPU64 Parameters for more details.

Micromega Corporation 36 uM-FPU64 IDE User Manual r411

Reference Guide: Menus and Dialogs

Tools Menu

Number Converter

Interactive Compiler

Firmware Update...

Number Converter
Brings the Number Converter window to the front. The number converter provides a quick way to
convert numbers between various 32-bit and 64-bit formats. Floating point, decimal and hexadecimal
numbers are supported. The Auto, Float, Decimal, and Hexadecimal buttons above the Input field
determine how the input is interpreted. If Auto is selected, the input type is determined automatically
based on the characters entered in the Input field. The input type is displayed to the right of the Input field.
The input type can be manually set using the Float, Decimal and Hexadecimal buttons. Invalid
characters for the selected type are displayed in red, and will be ignored by the converter. The Output
fields display the input value in all three formats. The hexadecimal value can be displayed in 8-bit, 16-bit,
32-bit, or 64-bit format, with a choice of prefix characters. The format can be selected to match the format
used by microcontroller programs.

One of the handiest ways of using the number converter is with copy and paste. You can copy a number
from program code or a trace listing, and paste into the Input field. The Input field accepts floating point
numbers, decimal numbers, and hexadecimal numbers in 8-bit, 16-bit, 32-bit, and 64-bit formats. You can
copy from the Output fields to program code.

m Number Converter l = lﬁl

Input
@ Auto () Float () Decimal
'Hex () 32-bit Hex ©) 64-bit Hex
[100.25] Float
Hex Prefix: E] Hex Format:
32-bit Values
[100.25 Float
(1120436224 Decimal
|342, $C8, $80, 500 Hex
64-bit Values
[100.25 Float
|4636754883540680704 Decimal
|40, $59, $10, 500, S00, S00, $00, SO0 Hex

Micromega Corporation 37 uM-FPU64 IDE User Manual r411

Reference Guide: Menus and Dialogs

Interactive Compiler
Brings the Interactive Compiler window to the front. The interactive compiler window takes source
code, compiles the code and sends it to the uM-FPUG64 instruction buffer. This can be used for a variety of
testing applications. User-defined functions can be called, devices can be accessed using FPU instructions,
etc. The instruction buffer is cleared before the compiled code is sent. If the FPU is running, the code will
be executed immediately. If the FPU is currently at a breakpoint, the instructions will be executed when the
next Go or Step command is issued.

Only equations, procedures and assembly code are supported by the interactive compiler, but all of the
symbol definitions from the last source code compile can be used in the interactive compiler window.
For example:

Call procedure main:
main

Initialize the LCD on pin 0 and write a test string:
devio(LCD, ENABLE, 0, ROWS_4+COLS_20)
devio(LCD, WRITE_ STR, “test”)

Initialize variables and call functions and XOPs:

-

%) Interactive Compiler ==
timeset(0) -
al0]=0
a[l] = 0
al2] = -1
v[0]=1
v[l]=2
v[2]=0

F1 = radians(60)

m

q_fromAngleAxis(qr,F1,a)
q_conjugate(qrp, qr)
q_fromVector(qt,v)
q_multiply(qt, gr, qt)
q_multiply(qt, qt, qrp)
q_toVector(v,qt)
setRotate(F1,3)
rotateVector(v) —

1

Compiled Successfully. Code sent to FPU.

Check] [Compile and Send] [Read Registers] [Reset

Micromega Corporation 38 uM-FPU64 IDE User Manual r411

Reference Guide: Menus and Dialogs

The Import button loads previously saved interactive compiler code from a text file.

The Save button saves the interactive compiler code to a text file.

The Check button compiles the code and checks for errors.

The Compile and Send button compiles the code and sends it to the FPU instruction buffer.

The Read Registers button reads the FPU registers and displays them in the Debug Window.

The Reset button sends a rest command to the FPU.

Compiler code can be entered interactively, with context sensitive menus available to assist. A control-click
inside the interactive compiler window displays a context-sensitive pop-up menu of all registers, constants,
procedures, functions, and operators that are currently defined. Selecting an item from the pop-up will
insert that item into the interactive compiler window. This is a useful way to test user-defined functions.

Once the functions are programmed into Flash, the interactive compiler window can be used to call the
functions for testing. Equations and procedure calls use the same syntax as the source code compiler.

[[ﬁ_ Interactive Compiler &L‘éj‘
|

Operator » |

Register » dataCount

Procedure » dateTime

User Procedure » day
elevation
error
file
fileAddress
fileCount

Check] [Compile and Ser hour
L ! lastKey

latitude
longitude
minute
month
second
timeZone
weekday
year

Micromega Corporation 39 uM-FPU64 IDE User Manual r411

Reference Guide: Menus and Dialogs

Firmware Update...

This menu item is used to update the uM-FPU64 firmware. Firmware files are provided as part of the uM-
FPUG64 IDE installation and are installed in the Firmware folder. When the Firmware Update... menu
item is selected (or button is pressed), a dialog is displayed to select the firmware file to install.

r R b
&) Open uM-FPUB4 Firmware File [
Lookin: |, Fimware - 07 > Er
D= Name ’ Date modified Type
*/p, | uMFPUG4 64K28 Firmware V403.dat 25/09/20127:20 AM DAT File
RecentPlaces | ™\ FpUG4 64K28 Firmware V404.dat 05/02/20132:13PM DAT File
! | uMFPU64 64K44 Firmware V403.dat 25/09/2012 7:52 AM DAT File
__|uMFPUG4 64K44 Firmware V404.dat 05/02/2013 2216 PM DAT File
Desktop
u=a)!
Libraries
A
A
Computer
@
L < | [} »
Network
File name: | v Open
Flesoftype: [uM-FPU fimware ("dat) v [Cancal |

Note: There are two types of uM-FPU64 firmware. The 28-pin chips require firmware files that
have 64K28 as part of the filename. The 44-pin chips require firmware files that have 64K44

as part of the filename.

Once the firmware file has been selected a dialog is displayed that shows a description of the firmware file
and displays the status and progress of the firmware upgrade. The upgrade process only takes a few
seconds. When the upgrade is complete a Firmware upgrade completed status message will be

displayed.

Firmware Description:

uM-FPUG4 Firmware

Copyright © Micromega Corporation 2011-2013
64K28, V404

0050A6BB

Programming page 5 of 42

Note: It’s important that a stable 3.3V operating voltage is provided to the uM-FPU64 chip during
the firmware upgrade, and that the upgrade process is not interrupted.

Micromega Corporation 40

uM-FPUG64 IDE User Manual r411

Reference Guide: Menus and Dialogs

Window Menu

| Window |

Show Main Window

Serial Setup Options...

Show Serial Window 4

Show Flash Window
Show RAM Window
Show Matrix Window

Show Main Window
Brings the main IDE window to the front.

Serial Setup Options...
Displays a tabbed dialog that is used to set the display type for each of the serial windows.

' r I\
&) Serial Setup Options M
SERIN | SEROUT | SEROUT - Device 1 | SEROUT - Device 2 | SEROUT - Device 3|

Display
© Text Input

() Terminal Emulation (SERIN/SERQUT linked)

Cancel] [OK]

Micromega Corporation 41 uM-FPU64 IDE User Manual r411

Reference Guide: Menus and Dialogs

&) Serial Setup Options E

| SERIN | SEROUT | SEROUT - Device 1 | SEROUT - Device 2 | SEROUT - Device 3 |

Display
(© Text Output

@ Table and Graph
External Program Link

() Terminal Emulation (SERIN/SEROUT linked)

[Link |

Show Serial Window

Brings the serial window selected from a hierarchical menu to the front.

Window

Show Main Window

Serial Setup Options...

Show Serial Window

Show RAM Window

SERIN

SEROUT
SEROUT-Devicel
SEROUT-Device 2
SEROUT-Device 3

Micromega Corporation

42

uM-FPUG64 IDE User Manual r411

Reference Guide: Menus and Dialogs

Show Flash Memory...
Displays a memory map showing the usage of the Flash memory reserved for user-defined functions on the
uM-FPUG64 chip. A status line at the top shows the percent of memory used and the number of bytes

available.
& Flash Memory Display ‘ =l 8|
Flash Memory Size: 6144 bytes, Used: 4007, Free: 2137 Read Flash
21:0052 (02 04 03| Total Pages=4, Used=3 -

21:0053 |07 00 1D| X Functions=0, Functions=29 [
21:0054 |16 OA 70| Upper Offset=2672
21:0055 |00 00 00
21:0056 |78 €8 10| Parameter 1, Parameter
21:0057 |01 ‘00 00| Parameter 3, Parameter
5,
7,

21:0058 |01 '00 00| Parameter Parameter
21:0059 | 7B JOA 08| Parameter Parameter
21:005A |00 00 84| Function 0

21:005B |15 00 F4 | Offset=132, Size=244
21:005C |01 01 78| Function 1

21:005D |01 00 5B | Offset=376, Size=91
21:005E |AF 01 D3| Function 2

21:005F |01 00 43| Offset=467, Size=67
21:0060 |81 02 16| Function 3

21:0061 |R4 00 82| Offset=534, Size=130
22:0000 |01 02 98| Function 4 S

(=00 Co [V) =)

Show RAM Window
Brings the RAM Display window to the front. This window is used to view the contents of RAM.

Micromega Corporation 43 uM-FPU64 IDE User Manual r411

Reference Guide: Menus and Dialogs

-

%] RAM Display L
Memory Allocation (bytes)

Foreground: 2304 Background: 0 Other: 0 DMA: 512
Hex Display [Load Pointers] [Read Memory]
0|12 |3|4|5|6|28|9|Aa|B|C|D|E|E
0000 |00 00 20 41 00 00 30 41 00 00 40 41 00 00 50 41 &
0010 [41 42 43 44 45 46 47 48 49 4R 4B 4C 4D 4E50 (1]
0020 | 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D S5E S5F &0
0030 |61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E &F 70
0040 |71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F 00
0050 |00 00 00 00 00 00 OO 00 00 OO 00 00 00 00 00 00
0060 |00 00 00 00 00 00 OO 00 00 OO 00 00 OO0 00 00 00
0070 |00 00 00 00 00 00 OO 00 00 OO 00 00 00 00 00 00
0080 |00 00 00 00 00 00 OO0 00 00 OO0 00 00 00 00 00 00 ~
L

Formatted Display [Clear Format] [Load Format][Save Format]
Address Description Type Value
0 matrix_A[0.0] FLOAT32 -
4 matrix A[01] FLOAT32 11.0 1
8 matrix A[1,0] FLOAT32 120 0
12 matrix A[11] FLOAT32 13.0
16 bvall INT8 65
17 bval2 INT8 66
18 wvall UINT16 17475
20 wval2 UINT16, hex 4645
22 INT8 71
23 INT8 12
24 String[0] UINT8, asc 1
25 String[1] UINTS8, asc J
26 String[2] UINTS8, asc K
27 String[3] UINTS8, asc L
28 String[4] UINTS8 asc M
29 flags UINT8, bin 01001110
30 UINT8 79 -

Memory Allocation shows the allocation of RAM to the various memory areas.

Foreground Memory allocated to the foreground process.

Background Memory allocated to the background process.

Other Memory allocated to FIFO1, FIFO2, FIFO3, FIFO4, and any loadable devices.

DMA DMA memory. Used by the ADC instructions. Can be accessed with indirect pointers.

The Load Pointers button set the description, type and value fields for any foreground pointer currently
loaded in the Register display of the Debug window. If the pointer is an array pointer, each element of the
array is added as a description.

The Read Memory button reads the current contents of RAM and updates the displays. If the memory
allocation has changed, the formatted display is cleared, and the last format file used is reloaded. All RAM
values that have changed since the last read are highlighted in red, and all non-zero values are shown with a

Micromega Corporation 44 uM-FPU64 IDE User Manual r411

Reference Guide: Menus and Dialogs

light yellow background.

The Clear Format button clears the formatted display. If the RAM format file default.txt exists in the ~/
My Documents/Micromega/RAM Files folder it will be loaded and the formatted display is updated.

The Load Format button loads a RAM format file and updates the formatted display.
The Save Format button saves a RAM format file.

The Hex Display shows the value of each byte in RAM as a hexadecimal value. The current selection in
the formatted display outlined with a box in the hex display. Clicking in the hex display will select the
corresponding item in the formatted display. Values that have changed since the last time RAM was read
are highlighted in red, and non-zero value are shown with a light yellow background.

The Formatted Display shows the RAM contents formatted according to the type specified. Each row in
the formatted display can have a separate description, type, and modifier. The description, type and modifer
can be entered using a RAM format file, or entered interactively using the Change RAM Format dialog that
is displayed by right-clicking on a row in the formatted display. Multiple rows can be changed by first
selecting the multiple rows, then right-clicking within the selection.

(%) Change RAM Format =)
Address Description Type Modifier
16 bvall |INTS8 v|/<none> ~|
Cancel] [Next] [OK]

The Description field can be used to enter any text string that doesn’t include a double quote () character.
There are some special cases:
n The type and modifier will be repeated n times specified (where 7 is a
decimal number).

* The type and modifier will be repeated until the end of the memory area.
nameli]

nameli, j|

nameli, j, k] Specifies an array name, with the dimensions of the array given by i, j and

k. For each element of the array, the description will be set the the name of
the element and the type and modifier will be repeated.

If you wish to use one of the special cases as a description, without it being handled as a special
case, then the description should be enclosed in double quotes (). (e.g. "name[2,2,2]” will
not be expanded into multiple array elements).

RAM Format Files are text files containing a description of the format to use in the formatted display.
They are stored in the ~/My Documents/Micromega/RAM Files folder. The autosave.txt file is saved
automatically to the ~/My Documents/Micromega/RAM Files folder when the RAM Display window is

Micromega Corporation 45 uM-FPU64 IDE User Manual r411

Reference Guide: Menus and Dialogs

closed, and loaded when the RAM Display window is first opened. The RAM format file default.txt is used
to specify the default format for the formatted display. If default.txt exists in the ~/My Documents/
Micromega/RAM Files folder it will be loaded when the Clear Format button is pressed. Other files can be
written and edited by the user. The RAM format files can contain the following lines:

Header

<RAM FORMAT> or <RAM FORMAT OVERLAY>
This must be the first line of the file. The <RAM FORMAT> line indicates that the file contains
a full format description. The formatted display is cleared before loading the format file. The
<RAM FORMAT OVERLAY> line indicates that the file is an overlay. The descriptions and
types defined in the file will be added the existing formatted display.

Comment

; comment
Any line that begins with a semi-colon (;) is a comment line. The autosave txt file adds
comments showing the date and time and the memory allocation in effect when the file was
saved.

Memory Area

<FOREGROUND>

<BACKGROUND>

<DMA>

<FIFO01l>to <FIFO04>

<DEVICE1l> to <DEVICE6>
Specifies the memory area for the description lines that follow. An optional offset can be
added as a second argument (e.g. <FOREGROUND, 100>). This specifies a decimal offset
into the memory area for the next description line. The offset can also have multiple decimal
values that are added together (e.g. <FOREGROUND, 100+10>).

Description

description, type, modifier
The description can be any text string that doesn’t include a double quote (*) character. There
are some special cases:

n The type and modifier will be repeated n times specified (where n is a
decimal number).

* The type and modifier will be repeated until the end of the memory area.
nameli]

nameli, j]

nameli, j, k] Specifies an array name, with the dimensions of the array given by i, j and

k. For each element of the array, the description will be set the the name of
the element and the type and modifier will be repeated.

If you wish to use one of the special cases as a description, without it being handled as a
special case, then the description should be enclosed in double quotes (). (e.g.

"name[2,2,2]"” will not be expanded into multiple array elements).

If the description string contains a comma, or you wish to use one of the special cases without

Micromega Corporation 46 uM-FPU64 IDE User Manual r411

Reference Guide: Menus and Dialogs

it being handled as a special case, then the description must be enclosed in double quotes (*°).
(e.g. "name[2,2,2]" will not be expanded into multiple array elements).

The type can be one of the following: INT8, UINT8, INT16, UINT16, LONG32, ULONG32,
FLOAT32,LONG64, FLOAT64.

The modifier is optional, and if not specified no modifier is used. The modifier can be one of
the following: HEX, BIN, ASC. The BIN modifier only displays the lower 16 bits if the type is
greater than 16 bits. The ASC modifier displays the ASCII value of the lower 8 bits.

Show Matrix Window
The Matrix Display window is brought to the front. This window is used to view the contents of matrix A,
matrix B, and matrix C. The matrix values are not updated automatically, they must be updated manually
using the Update button.

%) Matrix Display = B8] %

Display as Zero

Matrix A Memory: 80-179

5x5 0 1 2 3 4
0 1.940078 0.1433327 -1.433327 0.9117811 0.250601
1 0.1433327 1.030608 -0.3060847 0.0721287 0.1567412
2 -1.433327 -0.3060847 3.060847 -0.7212873 -1.567412
3 0.9117812 0.0721287 -0.7212874 1620122 -0.3255039
4 0.2506011 0.1567413 -1.567413 -0.325504 217727

Matrix B Memory: 480-499

5x1 0
0 1.0
1 0.0
2 0.5
3 -03
4 0.2

Matrix C Memory: 480-619

7x5 0 1 2 3 4
0 1.0 0.0 0.5 -03 0.2
1 0.0 1.0 01 0.0 0.0
2 0.5 01 0.74 045 06
3 -03 0.0 0.6081082 0.6363513 0.0951351
4 0.2 0.0 0.8108108 0.149501 0.4592907
5 0.250601 0.1567412 -1.567412 -0.3255039 217727
6 0.0 1.4012985e-45|2.8025969e-45|4.2038954 e-45] 5.6051939¢-45

Micromega Corporation 47 uM-FPU64 IDE User Manual r411

Reference Guide: Menus and Dialogs

The Display as Zero option can be used to display values that are close to zero as ~0.0.
A zero comparison value from le-1 to le-15 can be selected from the pop-up menu. If the absolute value of
the matrix element is less than the zero comparison value, the value is displayed as ~0.0.

Display as Zero: off Display as Zero: < 1e-6
[ix Di (=@ = | r —
%) Matrix Display = %)) Matrix Display
Display as Zero Display as Zero
Matrix A Memory: 0-1023 Matrix A Memory: 0-1023
128x2 0 1 128x2 0 1
0 0.0 -00 - 0 0.0 -0.0 B
1 09999995 | 5.128094%9¢-8 || | 1 0.9999935 ~0.0
2 0.0 -00 i 2 00 -0.0 i
3 2.8069717e-8 | 1.380042e-7 3 ~0.0 ~0.0
4 0.0 -00 4 0.0 -0.0
5 3.0437786¢-8 | 8.5863661e-8 5 ~0.0 ~0.0
6 0.0 -00 6 0.0 -0.0
7 1.8504295¢-8 | 3.5465771e-8 7 ~0.0 ~0.0
8 0.0 -00 8 0.0 -0.0
9 1.00953e-8 | 4.5020933¢-8 9 ~0.0 ~0.0
10 0.0 -0.0 2 10 0.0 -00 Z
Matrix B Matrix B
Empty Empty
Matrix C Matrix C
Empty Empty
LS

Micromega Corporation 48 uM-FPU64 IDE User Manual r411

Reference Guide: Menus and Dialogs

Help Menu

uM-FPUE4 IDE User Manual
uM-FPUG4 IDE Compiler
uM-FPUG4 Instruction Set
uM-FPUE4 Datasheet

Micromeqga Website
Application Notes

About uM-FPUE4 IDE

uM-FPUG64 IDE User Manual
uM-FPU64 IDE Compiler
uM-FPUG64 Instruction Set
uM-FPU64 Datasheet
These menu items display documentation files using the default PDF viewer. The IDE will open the files on

the Micromega website using the default web browser.

Micromega Website
Opens the Micromega website using the default web browser.

Application Notes
Opens the application notes page on the Micromega website using the default web browser.

About uM-FPU64 IDE
Displays a dialog with product identification, release version and release date of the uM-FPU64 IDE
software. A link to the Micromega website is also provided

Micromega Corporation 49 uM-FPU64 IDE User Manual r411

Reference Guide: Compiler and Assembler

Reference Guide: Compiler and Assembler

The uM-FPU64 IDE provides a compiler and assembler for generating uM-FPU64 code for either a target
microcontroller, or for user-defined functions that are stored in Flash memory on the FPU. The Source Window
has a built-in editor for entering the source code. The source code will be converted to FPU instructions by the
compiler and assembler. The output format is customized to the correct syntax for the target microcontroller selected
by the user. FPU functions can be stored in Flash memory on the uM-FPU64 chip.

Symbol definitions can include constants, FPU registers, pointers, arrays, and microcontroller variables. Math
equations can use 32-bit or 64-bit integer and floating point values, and can contain defined symbols, math
operators, functions and parentheses. The compiler also supports an in-line assembler for entering FPU instructions
directly.

See the uM-FPU64 IDE Compiler document for a description of the compiler and assembler.

Source Window

The source code for the program is entered into the Source Window.

File Name Compile Button Target Menu Program Button Source Code

| | |
&) uM{FPUG4 IDE | | | o8] =

File §dit Debug Fungtions Tools Window Elp

tutoriall.fpu IO utI Debug I Functions J,SéalTrace‘

- v
Target: [Arduino '] Program

distance VAR Word ' Microcontroller variable definitions
arealn VAR Word

Radius equ F10 ' FPU register definitions
Diameter equ F11

Circumference equ F12

Area equ F13

Radius = distance / 1000 ' Calculations

Diameter = Radius * 2
Circumference = PI * Diameter
Area = PI * Radius * Radius

COM8-57600-8-N-1 Compiled successfully for Arduine
f ')

Connection Status Status Message

Micromega Corporation 50 uM-FPU64 IDE User Manual r411

Reference Guide: Compiler and Assembler

The source window provides tab processing and auto-indent to make entering code easier and to improve the layout
of source files. All tab characters are replaced by one or more spaces.

Automatic Tab Replacement
When a source file is opened by the IDE, or text is pasted into the source window, all tab characters are replaced by
spaces to approximate the old tab settings. Saved files will no longer contain tab characters.

Tab Processing
When a fab key is pressed in the source window, the following actions now occur:

Tab with No Selection

If the line immediately above the current line has a space in the same position, spaces will be inserted
into the current line until the first non-space character in the line above. This makes it easy to line up
the columns text such as definitions or comments. If the line immediately above the current line has a
non-space character in the same position, then spaces will be added until the next tab stop. The tab stop
for the first 20 characters of a line is two, and the tab stop after 20 characters is four. This makes it easy
to indent code, but saves typing later in the line when tabbing to a particular column.

Tab with Text Selection
An indent is inserted by adding two spaces to the start of all lines covered by the text selection. The
text selection remains in place.

Shift-Tab
An indent is removed by deleting up to two spaces from the start of the current line, and if text is
selected, from all lines covered by the text selection. The text selection remains in place.

Delete
If a delete character is entered immediately after a tab or auto-indent, the last tab stop will be deleted.

Auto-Indent
If a return key or shift-return key is entered at the end of a source code line, the following actions occur:

Return
If a directive or control statements is detected on the current line, the next line will be indented by two
additional spaces, otherwise the next line will have the same indent as the current line. The recognized
directives or control statements are as follows:

#function

#asm

do

while

for

if...then

else

elseif

select

case

Shift-Return
A shift-return key causes the same action as the return key, but also appends the matching end statement. The

Micromega Corporation 51 uM-FPU64 IDE User Manual r411

Reference Guide: Compiler and Assembler

cursor is positioned on the next line. The matching end statement are as follows:

#function do if...then
#end loop endif
#asm while select
#endasm loop case
endselect
for
next
Output Window
The compiled code is displayed in the Output Window.
Output Tab Button Bar Compiler Output Window
N hl
%) uM-FPUG4 IDE [E=SRIER
File Edit Debug Functions Tools Windgw Help
l tutorial3-link.fp4 * I Output I Debug] F,uﬂ{tions I Serial Trace
Select All Copy Update Target File...
// [--- uM-FPU64 ---] Begin Register_Definitions -~
#define Radius 10 // uM-FPU register B
#define Diameter 11 // uM-FPU register
#¢define Circumference 12 // uM-FPU register
#¢define Area 13 // uM-FPU register
// [--- uM-FPU64 ---] End Register_Definitions
// [--- uM-FPU&4 ---] Begin Function_Definitions =
#¢define GetDiameter 1 // uM-FPU user function
#define GetCircumference 2 // uM-FPU user function
#¢define GetArea 3 // uM-FPU user function
// [--- uM-FPU64 ---] End Function_Definitions
// [--- uM-FPU64 ---] Begin Variable_Definitions Er
int distance; // signed word variable
int arealn; // signed word variable
// [--- uM-FPU64 ---] End Variable_Definitions
// distance var word ' Microcontroller variable definitions
// arealn var word
//
// Radius equ F10 ' FPU register definitions
// Diameter equ Fl1
// Circumference equ Fl12
// RArea equ F13
//
// GetDiameter func 1 ' Function prototypes
// GetCircumference func %
// GetArea func %
/!
// #function GetDiameter ' Function 1
// Diameter = Radius * 2
// SELECTIA, 11 -
COM4-57600-8-N-1 Compiled successfully for Arduino
Y Y >

T

Connection Status

T

Status Message

Micromega

Corporation 52

uM-FPUG64 IDE User Manual r411

Reference Guide: Compiler and Assembler

Updating Target Files with Linked Code

Target code generated by the compiler can by manually copied to target source files using copy-and-paste. An
automated update method is available using the Update Target File... button in the Output Window. To use the
automated update method, special comments are inserted into the target source file to define the begin and end points
for code insertion. These special comments, or links, are generated by the compiler. Links are automatically
generated for register definitions, function definitions, and variable definitions. An example of a register definition
link is shown below:

// [--- uM-FPU64 ---] Begin Register Definitions

#define Radius 10 // uM-FPU register
#define Diameter 11 // uM-FPU register
#define Circumference 12 // uM-FPU register
#define Area 13 // uM-FPU register
// [--- uM-FPU64 ---] End Register Definitions

Other user-defined links are generated by using the #target_code 1link id directive in the FPU file. For
example, using the following directive in the FPU file:

#target code calculations
Will generate the following code in the Output Window.

// [--- uM-FPU64 ---] Begin calculations
// Radius = distance / 1000 ' Calculations
Fpu.write(SELECTA, Radius, LOADWORD) ;
Fpu.writeWord(distance);
Fpu.write(FSET0, LOADWORD) ;
Fpu.writeWord(1000);
Fpu.write(FDIVO);

// [--- uM-FPU64 ---] End calculations

To initially insert links into the target source file, copy-and-paste the links from the Output Window to the target
source file.

When the Update Target File... button is pressed, a dialog is displayed so the user can select a target file. Any link
in the target file with a matching link in the Output Window will be updated with the code from the Output
Window. A timestamp comment is added to the start of the linked code stored in the target file. Linked code is
inserted into the target file using the indentation of the begin link in the target file. This allows the inserted code to
be properly aligned with other target code.

Micromega Corporation 53 uM-FPU64 IDE User Manual r411

Reference Guide: Compiler and Assembler

Reference Guide: Debugger

Utilizing the built-in debug monitor on the uM-FPU64 chip, the IDE provides a high-level interface for debugging
programs that use the uM-FPU64 floating point coprocessor. It supports the ability to trace uM-FPU instructions, set
breakpoints, single-step through execution of uM-FPU instructions, and display the value of uM-FPU registers. The
IDE includes a disassembler so that instruction traces are displayed in easy-to-read assembler format.

Making the Connection

For debugging, the uM-FPU64 IDE must have a serial connection to the uM-FPU64 chip. Refer to the section at the
start of this document called Connecting to the uM-FPU64 chip.

Source Level Debugging

Source level debugging is only available for user-defined functions. The source file is displayed below the trace
display. A movable divider is located between the trace display and debug display. Breakpoints can be set on any
executable line shown in the debug display (both source level and assembler). All executable lines have an expand/
collapse icon. Source lines can be expanded to display the assembler code generated by the source line. When the
debugger is active, a cursor shows the next instruction to be executed. If a source line is expanded, the debugger will
step by assembler instruction. If the source line is collapsed, the debugger will step by source line.

Debug Window
Trace Display Register Display

Selected Name

Debug Display Formatted Value

Button Bar

Y uM-FPUB4 IDE

File Edit | Debug Functions Tools | Help
testSourde.fp4 | Output | Debug ‘}FJnctionsi Serial [JO
« PR | S
Trace ‘ egisters O Background Read Register
Trace On ~ [x®Rro (4 000040zl O 3
F7 BREAK Rl twp Nall
EREAK R2 TFFFFFFF
TED! FCALL, O R3 TFFFFFFF
EREAK |at 0:0000 R4 7FFFFFFF
010 | SELECTA, 10 RS TFFFFFFF
BREAK |at 0:0002 RE TFFFFFFF
04 | CLRA ® R7 TFFFFFFF
BREAK |at 0:0003 RS TFFFFFFF
7E0 | FCALL, 1 R9 TFFFFFFF
BREAK [at 1:0000 4 R1O 00000000
0103 | | SELECTA, 10 R11 7FFFFFFF
BREAK [at 1:0002 R12 7FFFFFFF
v R13 TFFFFFFF
. ® R14 TFFFFFFF
L4 A\ R1S IFFFFFFF
#function 1 | R16 TFFFFFFF
=] E1N=01 R17 TFFFFFFF 7
(1) SELECTA, 1 = ma Regist
FSETI, 1 emporary Reqgisters
® if f1 then T1 TFFFFFFF -~
;comment T2 FFFFFFFF
] f2 = £3 ;commentl T3 TFFFFFFF
= T4 TFFFFFFF
‘7 sles TS 7FFFFFFF
PIMP 1
L= o T6 7FFFFFFF ™
String Length: 15 String Selection: 0, 15 Status: 81 ---2
0 5 10 15
COMS-57600-8-N-1
Connection Status String Buffer Status Message Status Byte

Moveable Divider

Source-level Debug Display

Micromega Corporation 54 uM-FPU64 IDE User Manual r411

Reference Guide: Compiler and Assembler

Source Code (expanded) Assembler Source Code (collapsed)

~
function 1
= fl=1
Breakpoint ——e €¥ SELECTA, 1
Cursor ——e=p FSETI, 1
[+ if fl then
sconment
Breakpoint —<jgif & £2 = £3 ;coumentl .
Expand/Collapse +=/ else
Left column: Breakpoint and cursor display.
Right column: Source code and assembler code display.
White background.: Source code (non-executable).
Gray background.: Source code (executable).
Yellow background: Assembler code (executable).

Double-click on left column (executable line):
Sets or clears breakpoint.
If no previous breakpoint, sets the next breakpoint.
If no more breakpoints, displays a placeholder.
If breakpoint or placeholder present, they are cleared.

Right-click on left column:

Clear All Breakpoints
Clear Breakpoint 1
Clear Breakpoint 2

Set Breakpoint 1
Set Breakpoint 2

Show Cursor
Show Breakpoint 1
Show Breakpoint 2

Double-click on right column (executable line):
Expands or collapses the individual line.
Breakpoints are cleared on lines that are collapsed.
Cursor is moved to expanded or collapsed line.
Right-click on right column:
Expand All
Collapse all

Micromega Corporation 55 uM-FPU64 IDE User Manual r411

Reference Guide: Compiler and Assembler

Debug Buttons

Step Step Auto
Stop Go Step Over Out Step

O T
||E]il}?}1{@

* Stop execution and enter debugger.

Go

e Start or continue execution.

Step

e Step to next executable line.

e If source code is unexpanded, the step is to next executable source line.
e If source line is expanded, the step is to next assembler instruction.
Step Over

* Step to next executable line in the same function (steps over function calls).
e If source code is unexpanded, the step is to next executable source line.
e If source line is expanded, the step is to next assembler instruction.
Step Out

e Steps out of current function.

Auto Step

¢ Functionality is unchanged from previous version.

The Trace Display displays messages and instruction traces. The Reset message includes a time stamp, is is
displayed whenever a hardware or software reset occurs. Instruction tracing will only occur if tracing is enabled.
This can be enabled at Reset by setting the Trace on Reset option in the Functions> Set Parameters... dialog,
or at any time by sending the TRACEON instruction.

The Register Display shows the value of all registers. Register values that have changed since the last update are
shown in red. The String Buffer displays the FPU string buffer and string selection, and the Status Byte shows
the FPU status byte and status bit indicators. The Register Display, String Buffer, and Status Byte are only
updated automatically at breakpoints. They can be updated manually using the Read Registers button.

The Go, Stop, Step and Trace buttons at the top left control the breakpoint and trace features, and the connection
status is displayed at the lower left of the window.

Micromega Corporation 56 uM-FPU64 IDE User Manual r411

Reference Guide: Compiler and Assembler

Trace Display

The scrolling window on the left of the debug window displays the debug trace output. When a Reset occurs a
message is displayed showing the date and time of the Reset.

RESET: 2011-09-27 13:19:31

Tracing is turned off at Reset, unless the Trace on Reset parameter has been set. Tracing can be controlled by the

program using the TRACEON and TRACEOFF instructions, or manually with the Trace button. If tracing is enabled,
all FPU instructions are displayed as they are executed. The opcode and data bytes are displayed on the left, and the

FPU instructions are displayed on the right in assembler format.

TRACE: ON
0104 SELECTA, 4
5E LOADPI
29 FSETO
2401 FMUL, 1
2401 FMUL, 1
1F3F FTOA, 63
F232302E3833 READSTR: "20.831"
3100

The Trace button toggles the trace mode on and off.
Clicking the Clear button above the Debug Trace window will clear the contents of the Debug Trace window.

Breakpoints

Breakpoints can be inserted into a program using the BREAK instruction, or initiated manually with the Stop button.
Breakpoints occur after the next FPU instruction finishes executing. When a breakpoint occurs, the last FPU
instruction executed before the breakpoint is displayed, followed by the break message, and the register display is
updated. Register values are displayed in red if the value has changed since the last time the display was updated, or
black if the value is unchanged.

5E LOADPI
BREAK

The Go, Stop, and Step buttons are enabled or disabled depending on the current state of execution. The Go
button is used to continue execution, and is enabled at Reset or after a breakpoint occurs. The Stop button is used to
stop execution after the next FPU instruction is executed. If the uM-FPU is idle when the Stop button is pressed,
the breakpoint will not occur until the next uM-FPU instruction is executed. If the FPU is already at a breakpoint,
then the Stop button will be disabled. The Step button is used to single step through instructions, with a new
breakpoint occurring after each instruction.

The Register Panel

The register panel displays the value of each register and indicates the register currently selected as register A and
register X. Register A and register X are indicated by an A and X marker in the left margin of the register panel. The
temporary registers are displayed at the bottom on the register panel.

For each register, the register number, optional register name, and formatted value is displayed. If you right-click on
the formatted value, a pop-up menu is displayed with the register value displayed in hexadecimal, floating point,
long integer, and unsigned long integer format. If you select a different format, the display will be updated to show
that format. The format of multiple registers can be changed by selecting a group of registers prior to the right-click

Micromega Corporation 57 uM-FPU64 IDE User Manual r411

Reference Guide: Compiler and Assembler

for the format pop-up menu.

(® Foreground
Registers O Background [Read Registers][Clear]
X RO 3.14159274 -
Rl tupl Nal —
RZ 7FFFFFFF D
R3 7FFFFFFF
R4 7FFFFFFF
R3 7FFFFFFF
RE 7FFFFFFF
R7 7FFFFFFF
R3 7FFFFFFF
RS 7FFFFFFF
B1NO Radins 2 53500005
Hex 40Z4CCCD QDUUl
Float 2.57500005
Long 1076153549 17920303
Unsigned 1076153549 83072472
[Rld JFFFFFEFF
| RIS 7FFFFFFF

Register names are automatically set from the register definitions in the source file. Registers can often have several
different names assigned. If you right-click on the register name, a pop-up menu is displayed showing all of the
names for that register. If you select a different name, the display will be updated to show that name.

(® Foreground
Registers (O Background [Read Registers] [Clear]
X RO 3.14159274 ~
tmp1 5
parami
7FFFFFFF

If you right-click on the register number, a pop-up menu is displayed that always you to scroll the display to the
register A value, register X value, the 32-bit registers (0-127), or the 64-bit registers (128-255).

(® Foreground
i [Read Reqisters] [Clear]
Registers (O Background
X RO 3.14159274 ~
@l +mnl Nal —
show & 7TFFFFFFF W
R/ chow 32-bit TFFFFFFF
R/ show 64-bit 7FFFFFFF
R 7FFFFFFF

The current register values are automatically updated after every breakpoint. The Read Registers button can also
be used to manually force an update of the register values. Register values are displayed in red if the value has
changed since the last time the display was updated, or black if the value is unchanged.

Micromega Corporation 58 uM-FPU64 IDE User Manual r411

Reference Guide: Compiler and Assembler

Error messages

<data error>
The IDE communicates with the uM-FPU64 chip using a serial connection. If the IDE detects an error in the
data received from the FPU, the data error message is displayed in the Debug Trace. This can sometimes
occur immediately before a Reset, if the reset interrupts a trace operation in progress. This situation can be
ignored. If it occurs at other times it indicates a problem with the serial communications. The trace in the Serial
IO window can be reviewed and may help determine the source of the problem.

<trace suppressed>
In certain circumstances, the FPU is capable of sending data faster than the PC can handle it. If this occurs, the
trace suppressed message is displayed, and the IDE attempts to recover by suppressing data, resynchronizing,
and continuing. This situation should not normally occur, but can occur if excessive amounts of trace data are
being produced such as tracing a user-defined function that is looping. To avoid this situation, the TRACEOFF
and TRACEON instructions can be used to selectively disable tracing.

<trace limit xx>
The IDE will retain up to 100,000 characters in the Debug Trace. This is normally more than sufficient for
tracing and debugging. The Debug Trace buffer can be cleared with the Clear button. If the buffer is
exceeded, the first portion will be deleted, and the trace limit message displayed in its place. The trace limit
messages are numbered sequentially. This message does not necessarily indicate an error, unless it occurs in
conjunction with one of the messages described above.

FPU Error: Address error
An address error occurred inside an XOP instruction. The likely cause is an invalid parameter being specified in
an XOP instruction.

FPU Error: Buffer overflow
The 256 byte FPU instruction buffer has been exceeded. This can be avoided by waiting for a ready status at
least every 256 bytes, if more than 256 byes are sent to the FPU between read operations. If debug trace is
enabled, instructions take longer to execute, particularly if the serial buffer fills, which can sometimes lead to an
FPU buffer overflow that doesn’t occur an normal execution speed.

FPU Error: Call level exceeded
The 16 levels of call nesting available on the uM-FPU64 has been exceeded.

FPU Error: Device not loaded
ADEVIO,device,LOAD DEVICE,.. instruction failed because the loadable device was not
programmed into Flash memory.

FPU Error: Function not defined
A user function has been called that has is not currently stored in FPU Flash memory.

FPU Error: Incomplete Instruction
An instruction that requires multiple bytes has not received the required number of bytes within the timeout
period of one second. This is generally caused by a programming error in the target code.

FPU Error: Invalid parenthesis
There are 8 levels of parentheses available using the LEFT and RIGHT instructions. Either too many LEFT
instructions have been sent, or there is a mismatch with the number of LEFT and RIGHT instructions.

FPU Error: Memory Allocation failed
A memory allocation failed because the number of bytes requested were not available in the dynamic
allocation area.

FPU Error: XOP not defined
An extended opcode (XOP) was called that is not currently stored in FPU Flash memory.

Micromega Corporation 59 uM-FPU64 IDE User Manual r411

Reference Guide: Auto Step and Conditional Breakpoints

Reference Guide: Auto Step and Conditional Breakpoints

The Auto Step feature provides a means to automatically single step through FPU instructions. This feature, in
conjunction with Auto Step Conditions, can be used to implement conditional breakpoints. Conditional breakpoints
stop instruction execution when one of the specified conditions occur. Breakpoints can be set for a variety of
conditions including: when a particular instruction is executed, when a user-defined functions is called, when a
specified number of instructions have been executed, when a register value changes or matches a particular
expression, or when a string comparison matches a particular condition. Multiple conditions can be specified, and a
breakpoint will occur when any of the conditions is met.

Conditional breakpoints are only active when the Auto Step operation is used. They are not active when the Go or
Step operation is used. Instruction execution is much slower using Auto Step since an internal breakpoint occurs
for each instruction, and the debug trace and register data are checked for Auto Step Conditions.

Auto Step is activated by clicking the Auto Step button, or selecting the Debug> Auto Step menu item.
Auto Step Conditions are set by right-clicking the Auto Step button, or selecting the Debug> Auto Step

Conditions menu item. The Auto Step Conditions can also be set to appear each time the Auto Step button is
pressed.

Auto Step Conditions Dialog

Auto Step Conditions

Break on Instruction

E] Instruction: v v
Break on FCALL
] Function: | <any function: v

() break on call) break on return

Break on Count

D Instruction Count:

Break on Register Change

D Reqisters:

Break on Expression

I:l v‘ '= v‘ YU v‘
Break on String
O] equals v

@ string O Selection

Always display this dialog before Auto Step

[Clear Break Conditions] [oK] [Cancel]

Micromega Corporation 60 uM-FPU64 IDE User Manual r411

Reference Guide: Auto Step and Conditional Breakpoints

Break on Instruction
This condition causes a breakpoint when a particular instruction is executed. The instruction is specified using
assembler format as shown below.

Break on Instruction

Instruction: |SELECTA v

The opcode can be selected from a pop-up menu,

Break on Instruction
=] Instruction: W

ACOS AP
ADCLOAD
ADCLONG
ADCMODE
ADCSCALE
ADCTRIG
ADCWAILT
ALOADX
ASIN
ATAN

or the opcode can be typed in the field. An auto-complete feature is provided to assist in typing the opcode.

Break on Instruction

Instruction: |sel v

SELECTA
SELECTMA
SELECTME
SELECTMC
SELECTX

Break on FCALL
This condition causes a breakpoint when a user-defined function is called, or when it returns.

Break on FCALL
Function: |6 - drawLineGraph ¥

(@ breakoncall (O break on return

The function is selected from a pop-up menu. The menu has all of the function numbers. If functions have been
defined in the current source file, and compiled, the function name is also displayed in the menu. The special item
<any function> can also be selected to cause a breakpoint on any function call.

Micromega Corporation 61 uM-FPU64 IDE User Manual r411

Reference Guide: Auto Step and Conditional Breakpoints

Break on FCALL

Function: | <any function ;

0 - getlD

1 - getDistance

2 - getLocation

3 - getLatlong

4 - radiansToDM

S - readNMEA

6 - parseGPRMC

7 - NMEA_Degrees
8
9
10

Break on Count
This condition causes a breakpoint after a specified number of instructions has executed.

Break on Count
Instruction Count: 100

Break on Register Change
This condition causes a breakpoint when the value changes in one of the specified registers.

Break on Register Change
Reaqisters: |1,3-10,20:2

Multiple registers can be specified separated by commas. A register can be specified as:
e asingle register value (e.g. 1)
e arange of register values (e.g. 3-10 which selects registers 3 through 10)
e an array of register values (e.g. 20:2 which selects two registers starting at registers 20)

If register names have been defined in the current source file, and compiled, the names can also be used.

Break on Expression
This condition causes a breakpoint whenever the expression is true.

Break on Expression
:Iatl ¥ |= w|(|0 v |

The left side of the expression must be a register. A register number can be typed in, or if registers have been defined
in the current source file, and compiled, a pop-up menu can be used.

Break on Expression
O | v = v |0 v |

lat1
long1
lat2
long2

Micromega Corporation 62 uM-FPU64 IDE User Manual r411

Reference Guide: Auto Step and Conditional Breakpoints

The operator used by the expression is chosen from the middle pop-up menu

Break on Expression

[lat1 v

The operators are as follows:

= equal

<> not equal

> greater than

>= greater than or equal
< less than

<= less than or equal
=~ approximately equal

The approximately equal operator is used for floating point values. The condition is true if the register value is
greater than (value - 0.000001) and less than (value + 0.000001).

The left side of the expression can be any value. The value can be typed in or the pop-up menu can be used for
predefined values.

Break on Expression

; lat1 wll = v |1 v
-Infinity

-1000000

-1000

-100

-10

-pi

pi
10

100
1000
1000000
+Infinity
Mal

Micromega Corporation 63 uM-FPU64 IDE User Manual r411

Reference Guide: Auto Step and Conditional Breakpoints

Break on String
This condition causes a breakpoint if the string comparison is true.

Break on String
| starts with v |31

& string O Selection

The string comparison can either be the entire string buffer, or the current string selection. The comparison operator
is selected from the left pop-up menu, and the string to compare is entered in the field on the right.

Break on String

O

equals

The comparisons for length require a decimal number to be entered in the field on the right. The comparisons for
selection, length require two decimal numbers separated by a comma to be entered in the field on the right.

Micromega Corporation 64 uM-FPU64 IDE User Manual r411

Reference Guide: Programming Flash Memory

Reference Guide: Programming Flash Memory

The Function window provides support for storing user-defined functions on the uM-FPU64 chip. Stored functions
can reduce memory usage on the microcontroller, simplify the interface and often increase the speed of operation.
The uM-FPU64 reserves 2048 bytes of flash memory for user-defined functions and parameters (plus 256 bytes for
the header information). Functions are stored as a string of FPU instructions, and up to 64 functions can be defined.
Functions are specified in the source file by using the # FUNCTION directive. See the section entitled Reference
Guide: Generating uM-FPUG64 Code for more details.

Function Window

Function List

Name New Size Stored Size Compare New Function Code Button Bar
| al
%) uM-FPUG4 IDE L (| @] R |
File EHit Debug Funxtions Tools [Window Help
‘ GCdistance.fpu * | Output Mbug ‘ Functigns | Serial Trac:—‘
Functjons: New: 42%5 Stored: bytes New Function 5: readNMEA (]
Name New Stored = 0000 SEROUT, SET_BAUD, BAUD 4800 [Read Functions]
0 getd 2 2 Yes ~|[0003 SERIN, ENASLE joax
Di ’ IEh:‘— MER
1 get:):.st.ar.me 402 4°2 Yes 0007 BRA, LT, 60005
2 getlocation 181 181 Yes 000A STRCMP, "GPRMC" [Program Flash]
3 getlatlong 87 87 Yes 0011 BRA, NZ, $0005 _)
4 radiansToDM 38 38 Yes 0014 STRFIELD, 3 b Overwrite Stored Functions
5 readNMEA 32 32 Yes ggig Zgﬁc"‘ﬁ; "A'o'oos © Always
£ $;
6 parseGPRMC 18 18 Yes 001C FCAI'..L, IG) Confirm with User
7 NMER Degrees 43 43 Yes 001E SERIN, DISABLE © Never
g 0020
9
10
11 Nl
12 .
13 Stored Function 5: <read from FPU>
14 0000 SEROUT, SET_BAUD, BAUD_ 480C ~
15 0003 SERIN, ENABLE NMEA r
16 0005 SERIN, READ NMER
17 0007 BRA, LT, $0005
000A STRCMP, "GPRMC" =
18 0011 BRA, NZ, $0005 i
19 0014 STRFIELD, 3
20 0016 STRCMP, "A" ’
21 0019 BRA, NZ, $0005
55 001C FCALL, &
001E SERIN, DISABLE
23 0020
24
25
28 = -
COMB-57600-8-N-1 Programming completed.
" ? h V]
I I
Connection Status Status Message Stored Function Code

The Function List provides information about each function defined by the compiler and stored on the FPU. The
Name column in the Function List displays the name of all functions defined in the source file. The New column
shows the size in bytes of the functions defined in the source file, and the Stored column displays the size in bytes
of functions currently stored on the FPU. If nothing is displayed in the Stored column, the Read Stored
Functions button can be pressed to read the stored functions from the FPU. The = column displays Yes if the new
and stored functions are the same, or NO if they are different. The total bytes used in the New column and Stored

Micromega Corporation 65 uM-FPU64 IDE User Manual r411

Reference Guide: Programming Flash Memory

column is displayed at the top of the function list.

The New Function Code displays the FPU instructions for compiled functions, and the Stored Function Code
displays the FPU instructions for functions stored on the FPU. The function to be displayed is selected by selecting
one of the functions in the Function List.

The Read Stored Functions button is used to read the functions currently stored on the FPU and update the
Function List.

The Program Functions button is used to program new functions to the uM-FPU64 chip. If a newly defined
function is different then the currently stored functions, the action taken is determined by the Overwrite Stored
Functions option.

Owenwrite Stored Functions
() Always

() Confirm with Uzer

(=) Mever

If the Always option is selected, a new function will always overwrite any previously stored function.

If the Confirm with User option is selected, you are asked to confirm whether a new function should replace the
previously stored function.

If the Never option is selected, new functions are not allowed to replace previously stored functions.

Micromega Corporation 66 uM-FPU64 IDE User Manual r411

Reference Guide: Setting uM-FPU64 Parameters

Reference Guide: Setting uM-FPU64 Parameters

The Set Parameters...

menu item is used to set the uM-FPU64 mode parameter bytes.

Set Parameters Dialog

Set Parameters

[1Break on Reset

Trace on Reset (Foreground)
[]Trace Inside Functions {Foreground)
[]Trace on Reset (Background)

Interface Mode

{(*)5EL pin selects interface (default)
() 12C inkerface (SEL pin ignored)
() SFT inkerface (SEL pin ignored)

[]Trace Inside Functions (Background)
[] pisable BusyiReady Status on SOUT
[]Use PIC Format (IEEE 754 is default)
[]1dle Mode Power Saving Enabled
[]5leep Mode Power Saving Enabled

External Input
(%) Rising Edge

I2C Address: | 00

Auko-Start Mode
If SEL pin is Low ak Reset:

[| Disable Debug
[]call Function:

3PI
S2UT

d

Digital Fin: | &

3.3% [5% (Open Drain) Pin Settings

) Faliing Edge

Dzz2:02 (44-pin) D300 (28-pin)
222120191581716151413121110 9 876543

deleloalelolelaa @ oas0a sk

+5Y (OC)
+3.3Y

[Restore Default Settings]

[(o]4] [Cancel]

Break on Reset

If this option is selected, a breakpoint will occur on the first instruction following a Reset.

Trace on Reset (Foreground)
If this option is selected, debug tracing is turned on at Reset for foreground tasks.

Trace Inside Functions (Foreground)
If this option is selected, debug tracing will be enabled inside functions called by foreground tasks.

Trace on Reset (Background)
If this option is selected, debug tracing is turned on at Reset for background events.

Trace Inside Functions (Background)
If this option is selected, debug tracing will be enabled inside functions called by background events.

Disable Busy/Ready status on SOUT

Micromega Corporation

67 uM-FPUG64 IDE User Manual r411

Reference Guide: Setting uM-FPU64 Parameters

If this option is selected, the Busy/Ready status will not be output on the SOUT pin, and the /BUSY pin must be
monitored for the Busy/Ready status.

Use PIC Format (IEEE 754 is default)

If this option is selected, the PIC format will be used for reading and writing floating point values. The uM-FPU64
chip uses floating point values that conform to the IEEE 754 32-bit floating point standard. This is also the default
format for reading and writing floating point values in FPU instructions. An alternate PIC format is often used by
PICmicro compilers. If this option is selected, floating point values are automatically translated between the PIC
format and the IEEE 754 format whenever values are read from the FPU or written to the FPU, and the
microcontroller program can use the PIC format. The IEEEMODE and PICMODE instructions can also be used to
dynamically change the format. For additional information regarding the TEEEMODE and PICMODE instructions,
see the uM-FPU64 Instruction Set.

Note: The IDE code generator currently only generates code for the default IEEE 754 format. If
the PIC format is used you will need to fix the data values in the code generated for FWRITE,
FWRITEA, FWRITEX and FWRITEO instructions.

Idle Mode Power Saving Enable
If this option is selected, the uM-FPU64 chip will go into a low power mode when idle.

Sleep Mode Power Saving Enabled
If this option is selected, the uM-FPU64 chip will go to sleep when idle and the chip is not selected. This mode is
only active if the interface mode is SPI with the CS pin used as a chip select.

Interface Mode
This option selects which digital I/O pin will be used for the external input, and specifies the active edge.

Interface Mode
By default, the SEL pin on the uM-FPUG64 chip is read at Reset to determine if the SPI or I°C interface is to be used.
The interface mode parameter can be used to force selection of SPI or I>C at Reset (ignoring the SEL pin).

I2C Address

By default, the I>C address used by the uM-FPU64 chip is C8 (hexadecimal) or 1100100x (binary). If the default
address conflicts with another I?C device, or if multiple uM-FPU64 chips are used on the same I?C bus, the address
can be changed to any other valid I?C address. The address is entered as an 8-bit hexadecimal number (with the
lower bit ignored). A value of 00 will select the default C8 address.

Auto-Start Mode

A user-defined function can be called and Debug Mode can be disabled when the FPU is Reset. If the Disable
Debug option is selected, Debug Mode will be disabled at Reset. This is useful if the SERIN and SEROUT pins are
being used for other purposes (e.g. GPS input, LCD output) and prevents the {RESET } message from being sent to
the SEROUT pin at Reset. If the Call Function option is selected, the specified function will be called at Reset.

These options are only checked if the CS pin is Low at Reset. If both the CS pin and SERIN pin are High at Reset,
the auto-start function is not called, and Debug Mode will always be entered. This provides a way to override the
auto-start mode once it is set. To use auto-start with an IC interface, the interface mode bits must be set to I’C (as
described above). It’s recommended that the interface be set to SPI or I?C using the interface bits whenever auto-
start mode is used, so that the CS pin can be used to enable or disable the auto-start mode.

3.3V /5V (Open Drain) Pin Settings

Micromega Corporation 68 uM-FPU64 IDE User Manual r411

Reference Guide: Setting uM-FPU64 Parameters

For pins that are 5V tolerant, the output can be defined as open drain to allow a 5V output using a pull-up resistor.

Restore Default Settings
This button restores the parameters to the following default settings:

Break on Reset not enabled
Trace on Reset (Foreground) not enabled
Trace Inside Functions (Foreground) not enabled
Trace on Reset (Background) not enabled
Trace Inside Functions (Background) not enabled
Disable Busy/Ready status on SOUT not enabled
Use PIC format (IEEE 754 is default) not enabled
Idle Mode Power Saving Enabled enabled

Sleep Mode Power Saving Enabled not enabled
External Input D8, rising edge
Interface Mode SEL pin selects interface (default)
[2C address c8

Auto-Start Mode> Disable Debug not enabled
Auto-Start Mode> Call Function not enabled
3.3V / 5V (Open Drain) Pin Settings all set to 3.3V

Micromega Corporation 69 uM-FPU64 IDE User Manual r411

Reference Guide: SERIN and SEROUT Support

Reference Guide: SERIN and SEROUT Support

The uM-FPU64 IDE uses the SERIN and SEROUT pins for communication with the debug monitor. It also supports
the ability to debug a project that uses the SERIN and SEROUT pins, and to receive serial data from multiple serial
devices. If the debug monitor is enabled, the FPU communicates with the IDE to get data for the SERIN instruction,
and sends data to the IDE from the SEROUT instruction. The SEROUT instruction supports three extra devices that
can be used for sending data to the IDE. If the debug monitor is not enabled, output from the additional SEROUT
devices is suppressed.

Note: To use the IDE support for the SERIN and SEROUT instructions, the debug monitor on the FPU
must be active. All SEROUT, SET_BAUD instructions that disable the debug monitor must be
commented out while debugging.

SERIN Window Setup Options

The SERIN window is configured using the Window> Show Serial Window> Setup Options menu item. It
can be configured for Text Input or Terminal Emulation mode. In Terminal Emulation mode, serial input and output
are both handled by the SEROUT window.

g N
[ﬁ} Serial Setup Options | =1 X

SERIN | SEROUT | SEROUT - Device 1 | SEROUT - Device 2 | SEROUT - Device 3

Display
@ Text Input
) Terminal Emulation (SERIN/SERQUT linked)

[Cancel] [OK]

- J

SERIN Window - Text Input, Character Mode

When the SERIN, ENABLE CHAR instruction is executed the IDE enters character mode. When a

SERIN,READ_ CHAR instruction is executed, the IDE waits for the user to send the next character. The characters
to send can be entered manually in the SERIN window or imported from a text file. In Text Input mode, the text is
not actually sent to the FPU until you select a character or group of characters, and press one of the send buttons.
The Send button sends the single character at the start of a selection. The Send and Repeat button sends each of the
selected characters, in sequence, one at a time, as each SERIN, READ CHAR instruction is executed. The user is not
prompted for additional input until the selection has been completely sent. The repeat action can be stopped by
making another selection.

Micromega Corporation 70 uM-FPU64 IDE User Manual r411

Reference Guide: SERIN and SEROUT Support

(SERIN Input El= =
Setup Options...] [Clear

abcdefghijklmnopqrstuvwiyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Waiting for character input... Send and Repeat Send

SERIN Window - Text Input, NMEA Mode

When the SERIN, ENABLE_ NMEA instruction is executed the IDE enters NMEA mode. When a

SERIN,READ_ NMEA instruction is executed, the IDE waits for the user to send the next NMEA sentence. The
sentences to send could be entered manually in the SERIN window, but they are normally imported from a text file.
The sentences are not actually sent to the FPU until you select a sentence or group of sentences, and press one of the
send buttons. The Send button sends the single sentence at the start of a selection. The Send and Repeat button sends
each of the selected sentences, in sequence, one at a time, as each SERIN, READ NMEA instruction is executed. The
user is not prompted for additional input until the selection has been completely sent. The repeat action can be
stopped by making another selection. Only complete sentences are sent to the FPU. If only part of a sentence is
selected, the complete sentence will be sent.

(SERIN Input ==
[Setup Options...] [Clear]

$GPRMC, 180303,2,5105.4550,N,11521.2573,W,0.0,328.9,100412,17.4,E,A*34 -
$GPm'AIIIIIIIIIIIIVIA*lC ‘ ‘
$GPGGR,120303,5105.4550,N,11521.2573,W,1,05,1.6,1322.0,M,-17.4,M, , *46

$GPGS2, 2, 3,01,,14,,22,31,32,,,,,,0.0,1.6,1.6%35
$GPGSV,2,1,07,01,46,289,40,11,41,256,42,14,63,061,41,20,15,292,33%76
$GPGSV,2,2,07,22,36,112,41,31,41,160,43,32,42,289,41%48
$GPGLL,5105.4550,N,11521.2573, W, 180303, 2, A*5C

$GPBOD,, T, ,M,, *47
$GPVIG,328.9,T,311.4,M,
$PGRME, 276.4,M,344.5,¥,
$PGRMZ, 4337, £, *1B
$PGRMM, WGS 84*06
$HCHDG,158.3,,,17.4,E*14

$GPRTE,1,1,c, *37

$GPRMC, 180305,2,5105.4535,N,11521.2672,W,0.0,328.9,100412,17.4,E,A*33
SGPRMB, R,y rrrrrrer eV A¥1C

AQDOACT 10020 E1NCE AC2C X 11C91 2€79 W 1 AT 1 D 1210 © M 17 A M %4AD

0.0,N,0.0,K,A%24
441.6,M%28

Waiting for NMEA input... [Send and Repeat] [Send]

Micromega Corporation 71 uM-FPU64 IDE User Manual r411

Reference Guide: SERIN and SEROUT Support

SEROUT Window Setup Options

The SEROUT window is configured using the Window> Show Serial Window> Setup Options menu item. It
can be configured for Text Output, Terminal Emulation, or Table and Graph mode.

— ™
&) Serial Setup Options M'
SERIN | SEROUT | SEROUT - Device 1 | SEROUT - Device 2 | SEROUT - Device 3

Display
() Text Output

() Terminal Emulation (SERIN/SERQUT linked)
@ Table and Graph

External Program Link

Link

[Cancel] [OK]

SEROUT Window - Text Output Mode

In Text Output mode, data sent by the SEROUT instruction is displayed in a text window, in black, with no additional
formatting. The text output can be exported to a text file. If a vertical tab character (\v, or \OB) is received from the
FPU, the SEROUT display is cleared.

-

SEROUT Display = = |
Setup Options...] [Clear
-0.082763671,0.4182129,0.93676757 -

-0.082519531,0.40893554,0.94335937

-0.083251953,0.41357421,0.9350586

-0.086425781,0.41259765,0.93725585

-0.083251953,0.40917968,0.9416504

-0.084472656,0.41845703,0.9416504

-0.080566406,0.40966796,0.93774414

-0.08203125,0.41894531,0.9428711

-0.084472656,0.41796875,0.94067382

-0.082519531,0.4128418,0.93969726

-0.083496093,0.41137695,0.94335937

-0.079345703,0.4165039,0.9399414

-0.08178711,0.41455078,0.93676757 —
-0.083251953,0.41357421,0.93774414
-0.084472656,0.41503906,0.94213867
-0.079101562,0.41186523,0.94067382
-0.083007812,0.41625976,0.9375
-0.082519531,0.41552734,0.93847656
-0.080810546,0.41479492,0.93969726
-0.083740234,0.41259765,0.93969726
-0.083496093,0.4116211,0.93725585
-0.08178711,0.4140625,0.93823242 | 4

m

1

Micromega Corporation 72 uM-FPU64 IDE User Manual r411

Reference Guide: SERIN and SEROUT Support

SEROUT Window - Terminal Emulation Mode

In Terminal Emulation mode, serial input and serial output are both handled by the SEROUT window. Data sent by
the SEROUT instruction is shown in blue, with no additional formatting. Characters typed by the user are shown in
red. They are not displayed until the SERIN instruction requests data. A typeahead buffer is provided. If a vertical
tab character (\v, or \OB) is received from the FPU, the SERIN/SEROUT display is cleared.

SERIN/SEROUT Terminal Emulation ==l .

Setup Options...] [Clear

Test> 1
Sensor 1: 2350

Test> 2
X:1.553
Y:0.778

Test>

Micromega Corporation 73 uM-FPU64 IDE User Manual r411

Reference Guide: SERIN and SEROUT Support

SEROUT Window - Table and Graph Mode

In Table and Graph mode, data sent by the SEROUT instruction is displayed in a table and graph. The data in each
column in displayed in a different color, and each column is graphed using a line of the same color. The X and Y

scales for the graph are automatically calculated to display the entire data set.

Data received from the SEROUT instruction must be comma separated values terminated with a carriage return. If
the values are non-numeric, they are displayed as column headings. If the values are numeric, a new row of data is

added to the table.

The new SEROUT (WRITE FLOAT...), SEROUT (WRITE_ LONG...), SEROUT (WRITE COMMA), and
SEROUT (WRITE_ CRLF) instructions make it easy to create comma separated values. If a vertical tab character (\v,
or \OB) is received from the FPU, the SEROUT display is cleared.

Table Column Headings

.
%) SEROUT Display = =
Setup Options... } [Clear]
Sample # Date/Timje [Off] Latitude [Off] ®Longitude [Off] i Elevation [Off] - | X Y
176 176 -1452 -2230 -
177 177 -1396 -2226
178 178 -1398 -2185
179 179 -1385 -2207
180 180 () -1431 -2208
181 181 -1503 -2202 —
182 182 -1589 -2198 —
183 183 -1606 -2166
184 184 -1645 -2137
185 2013-10-29 20:... -76.3743116666... -934 -2381 3282
186 186 -970 -2426 3241
187 187 -950 -2491 3233
188 188 -958 -2510 3273 <
4000

200 200 400 500
WW
2000 n W"\M
‘\
Graph Cursor
Export File

Save the data to a comma separated value (CSV) file.

Clear

Clears the table and graph.

The cursor displayed on the graph corresponds to the currently selected row in the table. The cursor can also be

Micromega Corporation

74

uM-FPUG64 IDE User Manual r411

Reference Guide: SERIN and SEROUT Support

dragged left and right, or stepped left and right using the left and right arrow keys. The selected row in the table and
the cursor on the graph are linked, so that changing one will also change the other. This makes it easy to identify the
numeric value of any point on the graph.

By default all columns are displayed on the graph, but the graph line for a column can be turned on and off by
clicking on the column heading. When the graph line for a column is turned off, [OFF] will be displayed at the end
of the column heading, and the column is not displayed on the graph.

SEROUT Device 1, Device 2, Device 3 Setup Options

The SEROUT - Devicel, SEROUT - Device 2, and SEROUT - Device 3 windows are configured using the
Window> Show Serial Window> Setup Options menu item. They can be configured for Text Output or Table
and Graph mode. The capabilities of these modes are the same as described for the SEROUT window, with the
exception of Terminal Emulator mode, which is only available for the SEROUT window.

The SEROUT Devices have no physical output, and are only supported by the IDE. They can be used for logging
background information for testing and debugging. For example run-time statistics could be logged to one of the
SEROUT Device windows. If the debugger is disabled, SEROUT instructions for devices 1,2 and 3 are ignored by
the FPU so there is very little overhead for a program that is not being debugged.

I\

[ﬁ} Serial Setup Options | =1 X

SERIN | SEROUT | SEROUT - Devicel | SEROUT - Device 2 | SEROUT - Device 3

Display
) Text Output
@) Table and Graph

External Program Link

Cancel] [OK]

Micromega Corporation 75 uM-FPU64 IDE User Manual r411

	Introduction
	Main Features
	Compiling
	Debugging
	Programming Flash Memory

	Further Information
	Table of Contents
	Installing the uM-FPU64 IDE Software
	Upgrading the uM-FPU64 Firmware
	Connecting to the uM-FPU64 chip
	Connection Diagram
	[image.pdf]

	Overview of uM-FPU64 IDE User Interface
	Source Window
	Output Window
	Debug Window
	Functions Window
	Serial Trace Window

	Tutorial 1: Compiling FPU Code
	Compiling uM-FPU64 code
	Starting the uM-FPU64 IDE
	Entering a Simple Equation
	Defining Names
	Sample Project
	Calculating Radius
	Copying Code to the Microcontroller Program
	Running the Program
	Calculating Diameter, Circumference and Area
	Copy Revised Code to the Microcontroller Program
	Running the Revised Program
	Saving the Source File

	Tutorial 2: Debugging FPU Code
	Making the Connection
	Tracing Instructions
	Breakpoints
	Single Stepping

	Tutorial 3: Programming FPU Flash Memory
	Making the Connection
	Defining functions
	Calling Functions
	Modifying the Code for Functions
	Compile and Review the Functions
	Storing the Functions
	Copy Revised Code to the Microcontroller Program
	Running the Program

	Reference Guide: Menus and Dialogs
	File Menu
	New…
	Open…
	Open Recent
	Save
	Save As…
	Exit

	Edit Menu
	Undo
	Redo
	Cut
	Copy
	Paste
	Clear
	Select All
	Comment
	Uncomment
	Find…

	Debug Menu
	Select Port…
	Reset
	Stop
	Go
	Step
	Step Over
	Step Out
	Auto Step
	Auto Step Conditions
	Turn Trace On
	Turn Trace Off
	Read Registers
	Read Version

	Functions Menu
	Select Port…
	Program Flash Memory
	Clear Flash Memory
	Read Functions
	Set Parameters…

	Tools Menu
	Number Converter
	Interactive Compiler
	Firmware Update…

	Window Menu
	Show Main Window
	Serial Setup Options…
	Show Serial Window
	Show Flash Memory…
	Show RAM Window
	Show Matrix Window

	Help Menu
	uM-FPU64 IDE User Manual
	uM-FPU64 IDE Compiler
	uM-FPU64 Instruction Set
	uM-FPU64 Datasheet
	Micromega Website
	Application Notes
	About uM-FPU64 IDE

	Reference Guide: Compiler and Assembler
	Source Window
	Automatic Tab Replacement
	Tab Processing
	Tab with No Selection
	Tab with Text Selection
	Shift-Tab
	Delete
	Auto-Indent
	Return
	Shift-Return

	Output Window
	Updating Target Files with Linked Code

	Reference Guide: Debugger
	Making the Connection
	Source Level Debugging
	Debug Window[image.pdf]
	Source-level Debug Display
	Debug Buttons
	Stop
	Go
	Step
	Step Over
	Step Out
	Auto Step

	Trace Display
	Breakpoints
	The Register Panel
	Error messages
	<data error>
	<trace suppressed>
	<trace limit xx>
	FPU Error: Address error
	FPU Error: Buffer overflow
	FPU Error: Call level exceeded
	FPU Error: Device not loaded
	FPU Error: Function not defined
	FPU Error: Incomplete Instruction
	FPU Error: Invalid parenthesis
	FPU Error: Memory Allocation failed
	FPU Error: XOP not defined

	Reference Guide: Auto Step and Conditional Breakpoints
	Auto Step Conditions Dialog
	Break on Instruction
	Break on FCALL
	Break on Count
	Break on Register Change
	Break on Expression
	Break on String

	Reference Guide: Programming Flash Memory
	Function Window

	Reference Guide: Setting uM-FPU64 Parameters
	Set Parameters Dialog
	Break on Reset
	Trace on Reset (Foreground)
	Trace Inside Functions (Foreground)
	Trace on Reset (Background)
	Trace Inside Functions (Background)
	Disable Busy/Ready status on SOUT
	Use PIC Format (IEEE 754 is default)
	Idle Mode Power Saving Enable
	Sleep Mode Power Saving Enabled
	Interface Mode
	Interface Mode
	I2C Address
	Auto-Start Mode
	3.3V / 5V (Open Drain) Pin Settings
	Restore Default Settings
	Disable Busy/Ready status on SOUT	not enabled

	Reference Guide: SERIN and SEROUT Support
	SERIN Window Setup Options
	SERIN Window - Text Input, Character Mode
	SERIN Window - Text Input, NMEA Mode
	SEROUT Window Setup Options
	SEROUT Window - Text Output Mode
	SEROUT Window - Terminal Emulation Mode
	SEROUT Window - Table and Graph Mode
	SEROUT Device 1, Device 2, Device 3 Setup Options

